Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

beta-Galactosidase: A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause Gangliosidosis, Gm1.

Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

1Department of Biology, University of the South, 2School of Biological Sciences, Louisiana Tech University, 3School of Medicine, Louisiana State University Health Sciences Center, 4Department of Biology, Furman University, 5Department of Computer Science, Louisiana Tech University, 6Clemson University

JoVE 55754


Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen

JoVE 53978

 Developmental Biology

Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients

1Department of Biomedical Science, The Bateson Centre, University of Sheffield, 2Institute of Genetic Medicine, Newcastle University, 3Department of Cardiovascular Science, The Bateson Centre, University of Sheffield, 4School of Biochemistry, University of Bristol, 5Biology Department, University of York

JoVE 53162

 Developmental Biology

Dissecting Multi-Protein Signaling Complexes by Bimolecular Complementation Affinity Purification (BiCAP)

1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 3RCSI Molecular Medicine, Royal College of Surgeons in Ireland, 4Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 5School of Medical Sciences, University of New South Wales, 6St Vincent's Hospital Clinical School, University of New South Wales, 7School of Medicine and Medical Science, University College Dublin

Video Coming Soon

JoVE 57109

 JoVE In-Press

In vivo Imaging of Transgenic Leishmania Parasites in a Live Host

1Interdisciplinary Immunology Program, University of Iowa, and the VA Medical Center, 2Department of Biochemistry, University of Iowa, and the VA Medical Center, 3Department of Internal Medicine, University of Iowa, 4Department of Molecular Microbiology, Washington University School of Medicine, 5Division of Dermatology, Harbor-UCLA Medical Center, Hanley-Hardison Research Center, 6Interdisciplinary Immunology Program, Iowa City VA Medical Center, 7Departments of Internal Medicine, Microbiology and Epidemiology, University of Iowa

JoVE 1980

 Immunology and Infection

Using In Vivo and Tissue and Cell Explant Approaches to Study the Morphogenesis and Pathogenesis of the Embryonic and Perinatal Aorta

1Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 2Department of Neurology, Yale University School of Medicine, 3Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine

JoVE 56039

 Developmental Biology

A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation

1Department of Microbiology, New York University School of Medicine, 2Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 3Department of Otolaryngology, New York University School of Medicine, 4Department of Cell Biology, New York University School of Medicine, 5Department of Physiology and Neuroscience, New York University School of Medicine, 6Department of Psychiatry, New York University School of Medicine, 7Center for Neural Science, New York University School of Medicine

JoVE 3823

 Immunology and Infection

Stereotaxic Injection of a Viral Vector for Conditional Gene Manipulation in the Mouse Spinal Cord

1Département Nociception et Douleur, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS), 2Departments of Anesthesiology and Pharmacology, Columbia University, 3Department of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences

JoVE 50313


Bacterial Transformation: The Heat Shock Method

JoVE 5059

Transformation is the process that occurs when a cell ingests foreign DNA from its surroundings. Transformation can occur in nature in certain types of bacteria. In molecular biology, transformation is artificially reproduced in the lab via the creation of pores in bacterial cell membranes. Bacterial cells that are able to take up DNA from the environment are called competent cells. In the laboratory, bacterial cells can be made competent and DNA subsequently introduced by a procedure called the heat shock method. Heat shock transformation uses a calcium rich environment provided by calcium chloride to counteract the electrostatic repulsion between the plasmid DNA and bacterial cellular membrane. A sudden increase in temperature creates pores in the plasma membrane of the bacteria and allows for plasmid DNA to enter the bacterial cell. This video goes through a step-by-step procedure on how to create chemically competent bacteria, perform heat shock transformation, plate the transformed bacteria, and calculate transformation efficiency.

 Basic Methods in Cellular and Molecular Biology

More Results...