Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Embryonic Stem Cells: Cells derived from the Blastocyst inner cell mass which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.

Embryonic Stem Cells

JoVE 10811

Embryonic stem (ES) cells are undifferentiated pluripotent cells, meaning they can produce any cell type in the body. This gives them tremendous potential in science and medicine since they can generate specific cell types for use in research or to replace body cells lost due to damage or disease.

ES cells are present in the inner cell mass of an embryo at the blastocyst stage, which occurs at about 3–5 days after fertilization in humans before the embryo is implanted in the uterus. Human ES cells are usually derived from donated embryos left over from the in vitro fertilization (IVF) process. The cells are collected and grown in culture, where they can divide indefinitely—creating ES cell lines. Under certain conditions, ES cells can differentiate—either spontaneously into a variety of cell types, or in a directed fashion to produce desired cell types. Scientists can control which cell types are generated by manipulating the culture conditions—such as changing the surface of the culture dish or adding specific growth factors to the culture medium—as well as by genetically modifying the cells. Through these methods, researchers have been able to generate many specific cell types from ES cells, including blood, nerve, heart, bone, liver, and pancreas cells. Regenerative medicine concerns the creation of living, functio

 Core: Biotechnology

Embryonic Stem Cell Culture and Differentiation

JoVE 5332

Culturing embryonic stem (ES) cells requires conditions that maintain these cells in an undifferentiated state to preserve their capacity for self-renewal and pluripotency. Stem cell biologists are continuously optimizing methods to improve the efficiency of ES cell culture, and are simultaneously trying to direct the differentiation of ES cells into specific cell types that could be used in…

 Developmental Biology

Induced Pluripotent Stem Cells

JoVE 10812

Stem cells are undifferentiated cells that divide and produce different types of cells. Ordinarily, cells that have differentiated into a specific cell type are post-mitotic—that is, they no longer divide. However, scientists have found a way to reprogram these mature cells so that they “de-differentiate” and return to an unspecialized, proliferative state. These cells are also pluripotent like embryonic stem cells—able to produce all cell types—and are therefore called induced pluripotent stem cells (iPSCs). iPSCs are potentially valuable in medicine, because a patient who needs a particular cell type—for instance, someone with a damaged retina due to macular degeneration—could receive a transplant of the required cells, generated from another cell type in their own body. This is called autologous transplantation, and it reduces the risk of transplant rejection that can occur when tissues are transplanted between individuals. To create iPSCs, mature cells such as skin fibroblasts or blood cells from a person are grown in culture. Then, genes for multiple transcription factors are delivered into the cells using a viral vector, and the transcription factor proteins are expressed using the cell’s machinery. The transcription factors then turn on many other genes that are expressed by embryonic stem cells, re

 Core: Biotechnology

Tissue Regeneration with Somatic Stem Cells

JoVE 5339

Somatic or adult stem cells, like embryonic stem cells, are capable of self-renewal but demonstrate a restricted differentiation potential. Nonetheless, these cells are crucial to homeostatic processes and play an important role in tissue repair. By studying and manipulating this cell population, scientist may be able to develop new regenerative therapies for injuries and diseases.


 Developmental Biology

An Introduction to Stem Cell Biology

JoVE 5331

Cells that can differentiate into a variety of cell types, known as stem cells, are at the center of one of the most exciting fields of science today. Stem cell biologists are working to understand the basic mechanisms that regulate how these cells function. These researchers are also interested in harnessing the remarkable potential of stem cells to treat human diseases.


Here,…

 Developmental Biology

Passaging Cells

JoVE 5052

Cell lines are frequently used in biomedical experiments, as they allow rapid culture and expansion of cell types for experimental analysis. Cell lines are cultured under similar conditions when compared to freshly-isolated, or primary, cells, but with some basic important differences: (i) cell lines require their own specific growth factor cocktails and (ii) their growth must be more closely…

 Basic Methods in Cellular and Molecular Biology

Induced Pluripotency

JoVE 5333

Induced pluripotent stem cells (iPSCs) are somatic cells that have been genetically reprogrammed to form undifferentiated stem cells. Like embryonic stem cells, iPSCs can be grown in culture conditions that promote differentiation into different cell types. Thus, iPSCs may provide a potentially unlimited source of any human cell type, which is a major breakthrough in the field of regenerative…

 Developmental Biology

Fate Mapping

JoVE 5335

Fate mapping is a technique used to understand how embryonic cells divide, differentiate, and migrate during development. In classic fate mapping experiments, cells in different areas of an embryo are labeled with a chemical dye and then tracked to determine which tissues or structures they form. Technological improvements now allow for individual cells to be marked and traced throughout…

 Developmental Biology

In-vitro Mutagenesis

JoVE 10813

To learn more about the function of a gene, researchers can observe what happens when the gene is inactivated or “knocked out,” by creating genetically engineered knockout animals. Knockout mice have been particularly useful as models for human diseases such as cancer, Parkinson’s disease, and diabetes.

Genes can be randomly knocked out, or specific genes can be targeted. To knock out a particular gene, an engineered piece of DNA called a targeting vector is used to replace the normal gene, thereby inactivating it. Targeting vectors have sequences on each end that are identical—or homologous— to the sequences flanking each side of the gene of interest. These homologous sequences allow the targeting vector to replace the gene through homologous recombination—a process that occurs naturally between DNA with similar sequences during meiosis. The targeting vector is introduced into mouse embryonic stem cells in culture, using methods such as electroporation—use of electric pulses to temporarily create pores in the cell membrane. Typically, to identify cells where the vector has properly replaced the gene, it is designed to include a positive selection marker—such as the gene for neomycin resistance (NeoR)—between the homologous regions; and a negative selection marker—such as th

 Core: Biotechnology

Recombineering and Gene Targeting

JoVE 5553

One of the most widely used tools in modern biology is molecular cloning with restriction enzymes, which create compatible ends between DNA fragments that allow them to be joined together. However, this technique has certain restrictions that limit its applicability for large or complex DNA construct generation. A newer technique that addresses some of these shortcomings…

 Genetics

Cleavage and Blastulation

JoVE 10908

After a large-single-celled zygote is produced via fertilization, the process of cleavage occurs while zygotes travel through the uterine tube. Cleavage is a mitotic cell division that does not result in growth. With each round of successive cell division, daughter cells get increasingly smaller.

At the beginning of embryogenesis, maternal mRNAs control development. However, by the eight-cell stage of cleavage, embryonic genes become activated in a process called zygotic genome activation (ZGA). As a result, maternal mRNAs get degraded, and ZGA causes a transition from maternal to zygotic genetic control of developing an embryo. Although maternal mRNAs get degraded, previously translated proteins may remain in the embryo through later stages of development. Cleavage patterns vary between organisms depending on the presence and distribution of egg yolk amongst other factors. For example, mammals have a holoblastic rotational cleavage pattern. They are holoblastic because they have sparse, but evenly distributed yolk and therefore end up with a cleavage furrow that extends through the entire embryo as opposed to being meroblastic where the cleavage furrow does not extend through the yolk-dense portion of the cytoplasm. At the onset of cleavage, rotational cleavage begins when the zygote first divides to form two smaller daughter cells called blas

 Core: Reproduction and Development

Genetic Engineering of Model Organisms

JoVE 5327

Transgenesis, or the use of genetic engineering to alter gene expression, is widely used in the field of developmental biology. Scientists use a number of approaches to alter the function of genes to understand their roles in developmental processes. This includes replacement of a gene with a nonfunctional copy, or adding a visualizable tag to a gene that allows the resultant fusion protein to …

 Developmental Biology

An Overview of Gene Expression

JoVE 5546

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the…

 Genetics

Patterning the Geometry of Human Embryonic Stem Cell Colonies on Compliant Substrates to Control Tissue-Level Mechanics

1Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, 2Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, 3Department of Mechanical Engineering, University of California Berkeley, 4Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 5UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California San Francisco, 6Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California San Francisco

JoVE 60334

 Bioengineering

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen

JoVE 53978

 Developmental Biology

Isolation of Murine Embryonic Hemogenic Endothelial Cells

1Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, 2Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 3Department of Molecular and Cellular Biology, Baylor College of Medicine

JoVE 54150

 Developmental Biology

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

JoVE 55091

 Developmental Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin

JoVE 52010

 Biology

Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions

1Department of Chemical and Materials Engineering, National Central University, 2Department of Botany and Microbiology, King Saud University, 3Cathay Medical Research Institute, Cathay General Hospital, 4Graduate Institute of Systems Biology and Bioinformatics, National Central University, 5Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 6Department of Internal Medicine, Taiwan Landseed Hospital, 7Department of Zoology, Bharathiar University, 8Thiruvalluvar University

JoVE 57314

 Bioengineering

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids

1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

JoVE 52885

 Developmental Biology

Serum Free Production of Three-dimensional Human Hepatospheres from Pluripotent Stem Cells

1MRC Centre for Regenerative Medicine, University of Edinburgh, 2UCL Great Ormond Street Institute of Child Health, University College London, 3Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, 4School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin

JoVE 59965

 Developmental Biology

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran

JoVE 54276

 Developmental Biology

Rapid Neuronal Differentiation of Induced Pluripotent Stem Cells for Measuring Network Activity on Micro-electrode Arrays

1Department of Cognitive Neurosciences, Radboudumc, 2Donders Institute for Brain, Cognition and Behaviour, Radboud University, 3Department of Human Genetics, Radboudumc, 4Department of Molecular Developmental Biology, Radboud University

JoVE 54900

 Developmental Biology

Modeling Osteosarcoma Using Li-Fraumeni Syndrome Patient-derived Induced Pluripotent Stem Cells

1Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 2Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, 3Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, 4Women's Health Institute, Cleveland Clinic Foundation, 5Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 6Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston

JoVE 57664

 Cancer Research

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333

 Developmental Biology
12345678910
More Results...