Summary

Imaging in vivo del midollo spinale di topo Utilizzo di due fotoni Microscopia

Published: January 05, 2012
doi:

Summary

Un protocollo minimamente invasiva per stabilizzare la colonna vertebrale del mouse ed eseguire ripetitivo<em> In vivo</emL'imaging del midollo> spinale utilizzando la microscopia a due fotoni è descritto. Questo metodo combina un dispositivo di stabilizzazione della colonna vertebrale e un regime di anestetico per ridurre al minimo i movimenti respiratori indotti e produrre dati di immagini grezzi che non richiedono l'allineamento o altre post-elaborazione.

Abstract

Imaging in vivo mediante microscopia a due fotoni 1 nei topi che sono stati geneticamente modificati per esprimere proteine ​​fluorescenti in specifici tipi cellulari 03/02 ha notevolmente ampliato la nostra conoscenza dei processi fisiologici e patologici in numerosi tessuti in vivo 4-7. Negli studi del sistema nervoso centrale (SNC), c'è stata una vasta applicazione di imaging in vivo del cervello, che ha prodotto una pletora di nuove e spesso inattese scoperte sul comportamento delle cellule come i neuroni, astrociti, microglia, in condizioni fisiologiche o patologiche 8-17. Tuttavia, le complicanze per lo più tecnici hanno limitato l'attuazione di imaging in vivo negli studi del midollo spinale del mouse vivente. In particolare, la vicinanza anatomica del midollo spinale ai polmoni e al cuore genera artefatti significativo movimento che rende l'imaging del midollo spinale che vivono un compito impegnativo. </p>

Abbiamo sviluppato un nuovo metodo che supera i limiti intrinseci di imaging del midollo spinale mediante la stabilizzazione della colonna vertebrale, la riduzione delle vie respiratorie indotta da movimenti e facilitando così l'utilizzo della microscopia a due fotoni per l'immagine del midollo spinale del mouse in vivo. Questo si ottiene combinando un dispositivo personalizzato di stabilizzazione vertebrale con un metodo di anestesia profonda, con una conseguente significativa riduzione delle vie respiratorie indotta movimenti. Questo protocollo video mostra come esporre una piccola zona del midollo spinale vivente che può essere mantenuto in condizioni fisiologiche stabili per lunghi periodi di tempo, mantenendo danno tissutale e sanguinamento al minimo. Rappresentante immagini RAW acquisite in dettaglio vivo in alta risoluzione la stretta relazione tra microglia e la vascolarizzazione. Una sequenza timelapse mostra il comportamento dinamico dei processi microgliali nel midollo spinale del mouse vivente. Inoltre, una scansione continua della stessa z-frame dimostrares la stabilità eccezionale che questo metodo può raggiungere per generare pile di immagini e / o filmati timelapse che non richiedono l'allineamento dell'immagine post-acquisizione. Infine, ci mostrano come questo metodo può essere usato per rivisitare e re-imaging stessa area del midollo spinale in seguito timepoints, consentendo studi longitudinali in corso di processi fisiologici o patologici in vivo.

Protocol

1. Costruire il dispositivo di stabilizzazione della colonna vertebrale Ordina la STS-A Narishige Morsetti Compact midollo spinale e la MA-6N Narishige adattatore in mano la testa. Design personalizzato e fare una piastra di base in acciaio inox per tenere le due parti Narishige in allineamento in modo che la testa dell'animale è supportato mentre la sua spina dorsale e la coda sono bloccato. Tenete presente che l'intero dispositivo dovrebbe andare bene sotto la lente microscopio di solito …

Discussion

Il metodo qui descritto consente di stabile e ripetitivo nel imaging in vivo di densamente popolate strutture fluorescenti cellulari nel midollo spinale di topi anestetizzati utilizzando la microscopia a due fotoni. La stabilità raggiunta è il risultato di un dispositivo su misura di stabilizzazione della colonna vertebrale e un regime di anestetico che riduce respiratoria indotta artefatto movimento. Il dispositivo di stabilizzazione della colonna vertebrale permette di respiro sotto il corpo del mo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato sostenuto dal National Multiple Sclerosis Society concedere RG4595A1 / T per DD e il NIH / NINDS concede NS051470, NS052189 e NS066361 alle figure KA e film adattato e / o ristampati da Davalos et al., J Metodi Neurosci. Mar 2008 30; 169 (1) :1-7 Copyright 2008, con il permesso di Elsevier.

Materials

Name of the reagent Company Catalogue number Comments
Rhodamine B dextran Invitrogen D1841 70 kDa, diluted in
ACSF (3% w/v)
Ketamine HCl Bionichepharma NDC No: 67457-001-10 Injectable, 50mg/ml
Anased Lloyd Labs NADA No: 139-236 Xylazine injectable,
20mg/ml
Acepromazine Vedco NADA No: 117-531 Injectable,10mg/ml
Artificial tears
ointment
Phoenix
pharmaceutical
NDC No: 57319-760-
25
Lubricant
Betadine Fisher 19-061617  
McPherson-Westcott
Scissors
World Precision
Instruments
555500S Curved, blunt-tip
scissors
Straight Forceps World Precision
Instruments
555047FT Toothed tip forceps
Small vessel cauterize Fine Science Tools 18000-00  
Gelfoam Pharmacia,Pfizer Inc. Mixer Mill MM400  
Compact spinal cord
clamps
Narishige STS-A  
Head holding adaptor Narishige MA-6N  
Gelseal Amersham
Biosciences Corp.
80-6421-43  
Lactated Ringers Baxter Healthcare 2B8609  
Buprenex Reckit Benckiser
Pharmaceuticals Inc.
NDC No: 12496-
6757-1
Buprenorphine,
injectable
Baytril Bayer NADA 140-913 Enrofloxacin,
antibacterial injectable
2.27% (20ml)
Heating pad – Large Fine Science Tools 21060-10  

References

  1. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  2. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
  3. Feng, G. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  4. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat. Methods. 2, 932-940 (2005).
  5. Germain, R. N., Miller, M. J., Dustin, M. L., Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat. Rev. Immunol. 6, 497-507 (2006).
  6. Misgeld, T., Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449-463 (2006).
  7. Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 50, 823-839 (2006).
  8. Davalos, D. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752-758 (2005).
  9. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  10. Grutzendler, J., Kasthuri, N., Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature. 420, 812-816 (2002).
  11. Svoboda, K., Denk, W., Kleinfeld, D., Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature. 385, 161-165 (1997).
  12. Trachtenberg, J. T. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 420, 788-794 (2002).
  13. Wang, X. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816-823 (2006).
  14. Christie, R. H. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858-864 (2001).
  15. Tsai, J., Grutzendler, J., Duff, K., Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181-1183 (2004).
  16. Grutzendler, J., Gan, W. B. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain. NeuroRx. 3, 489-496 (2006).
  17. Takano, T., Han, X., Deane, R., Zlokovic, B., Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1097, 40-50 (2007).
  18. Jung, S. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 20, 4106-4114 (2000).
  19. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W., Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572-577 (2005).
  20. Kim, J. V. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods. 352, 89-100 (2010).
  21. Shakhar, G. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 6, 707-714 (2005).
  22. Tadokoro, C. E. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med. 203, 505-511 (2006).
  23. Lindquist, R. L. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243-1250 (2004).
  24. Schwickert, T. A. vivo imaging of germinal centres reveals a dynamic open structure. Nature. 446, 83-87 (2007).

Play Video

Cite This Article
Davalos, D., Akassoglou, K. In vivo Imaging of the Mouse Spinal Cord Using Two-photon Microscopy. J. Vis. Exp. (59), e2760, doi:10.3791/2760 (2012).

View Video