Summary

的方向转变,并在电脉冲电场方向的应用,提高质粒的基因转移在体外</em

Published: September 12, 2011
doi:

Summary

基因转染,电是提高约两​​次脉冲的应用过程中改变电场方向时,细胞活力不受影响。基因转染的增加是由主管DNA进入细胞的膜面积增加。

Abstract

基因electrotransfer是一种物理方法,用于提供短期和强烈的电脉冲,从而导致细胞膜不稳定的应用进入细胞的基因,使其渗透到小分子,并允许转让大分子如DNA。它代表了一个病毒载体,由于其安全性,有效性和易于应用。对于基因electrotransfer使用不同的电脉冲协议,以达到最大的基因转染,其中之一是在脉冲传递改变电场的方向和方位。改变电场方向和方向,增加主管DNA进入细胞的膜面积。在这段视频中,我们展示了基因electrotransfer疗效差异时所有的脉冲是在同一个方向,并交付,脉冲时,通过改变或者电场方向和方向交付。对于这个集成了电极和高电压的原型生成器,它允许在电脉冲的应用不同方向的电场变化的目的端,分别使用。基因electrotransfer疗效是确定的脉冲数量除以所有细胞表达绿色荧光蛋白与细胞的数量的应用后的24小时。结果表明,基因转染增加时,在电脉冲传递的电场方向改变。

Protocol

1。细胞培养,质粒和缓冲区,实验的准备在这个实验中,使用中国仓鼠卵巢细胞(CHO – K1)。细胞是生长在一种营养混合物的HAM – F12辅以2毫米L -谷氨酰胺,10%胎牛血清,400μL/ L庆大霉素(所有自Sigma – Aldrich化学公司,Deisenhofen,德国),和1(PAA)的毫升/升crystacilin(Pliva公司,萨格勒布,克罗地亚)。细胞都保持在37 ° C,饱和湿度5%的CO 2,在孵化器的气氛为24小时。 放?…

Discussion

基因electrotransfer是一个多功能的生物科技技术,使进入细胞的DNA转移,通过应用短,高电压电脉冲,并由于其安全性,有效性和易于应用的病毒载体,代表了更安全的替代。虽然在今天的基因electrotransfer被广泛用于转染所有类型的细胞和第一阶段的临床试验,使用这种方法,已报道4,底层的机制仍然没有完全理解。据了解,应用足够的实力来的细胞的电脉冲,导致跨膜电位的增加,从而?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了斯洛文尼亚的研究机构(项目,基建中心IP J2 – 9770 – 0510和程序P2 – 0249)。这个视频代表的“电穿孔技术为基础的技术和处理”的科学研讨会,并在斯洛文尼亚的卢布尔雅那大学电气工程学院举办的研究生课程,补充材料。作者还感谢Duša Hodžič请提供质粒DNA。

Materials

Name of the reagent Company Catalogue number Comments
HAM-F12 PAA E15-016 culture medium
L-glutamine Sigma-Aldrich G7513  
fetal bovine serum PAA A15-151  
gentamicin Sigma-Aldrich G1397 antibiotic
crystacilin Pliva 625110 antibiotic
pEGFP-N1 Clontech Laboratories 6085-1 plasmid DNA
HiSpeed Plasmid Maxi Kit Qiagen 12662  
Na2HPO4 Merck F640786 933  
NaH2PO4 TKI Hrastnik 0795  
MgCl2 Sigma-Aldrich M-8266  
sucrose Sigma-Aldrich 16104  
trypsin/EDTA solution Sigma-Aldrich T4174  
pipette tip Custom made    
electric pulse generator Custom made    
6 well plate TPP 92406  
15 ml centrifuge tube TPP 91015  
75 cm2 culture flask TPP 90076  

References

  1. Rebersek, M. Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. Biomed Eng Online. 6, 25-25 (2007).
  2. Trontelj, K., Rebersek, M., Miklavcic, D. Tip electrode chamber for small volume electroporation, electrofusion, and gene transfection. 18, (2006).
  3. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841-841 (1982).
  4. Daud, A. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 26, 5896-5903 (2008).
  5. Pavlin, M., Miklavcic, D. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys J. 85, 719-729 (2003).
  6. Xie, T., Sun, L., Zhao, H., Fuchs, J., Tsong, T. Study of mechanisms of electric field-induced DNA transfection. IV. Effects of DNA topology on cell uptake and transfection efficiency. Biophys J. 63, 1026-1031 (1992).
  7. Rols, M., Delteil, C., Serin, G., Teissie, J. Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res. 22, 540-540 (1994).
  8. Golzio, M., Teissie, J., Rols, M. Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochim Biophys Acta. 1563, 23-28 (2002).
  9. Haberl, S., Miklavcic, D., Pavlin, M. Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry. 79, 265-271 (2010).
  10. Rols, M., Teissie, J. Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J. 75, 1415-1423 (1998).
  11. Kanduser, M., Miklavcic, D., Pavlin, M. Mechanisms involved in gene electrotransfer using high-and low-voltage pulses-An in vitro study. Bioelectrochemistry. 74, 265-271 (2009).
  12. Pavlin, M., Flisar, K., Kanduser, M. The role of electrophoresis in gene electrotransfer. J Membr Biol. 236, 75-79 (2010).
  13. Sersa, G., Cemazar, M., Semrov, D., Miklavcic, D. Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumors in mice. Bioelectrochem Bioenerg. 39, 61-66 (1996).
  14. Faurie, C. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med. 12, 117-125 (2010).

Play Video

Cite This Article
Pavlin, M., Haberl, S., Reberšek, M., Miklavčič, D., Kandušer, M. Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer in vitro. J. Vis. Exp. (55), e3309, doi:10.3791/3309 (2011).

View Video