Summary

マウス気管から基底細胞および粘膜下腺管細胞の単離

Published: September 14, 2012
doi:

Summary

ここでは、マウスの気管から基礎および粘膜下腺管細胞を単離するための我々のプロトコルを示しています。また、作成するために背マウス脂肪パッドに幹細胞を注入する方法を実証<em生体内で></em粘膜下腺の再生>モデル。

Abstract

大気道が1と我々は息毒素や感染性病原体による損傷することが影響を受けやすい環境と直接接触しており、。大気道が故に、私たちの体を守るための効率的な修復機構を必要とします。この修​​復プロセスは、気道内の幹細胞から発生し、気道から、これらの幹細胞を単離する修復および再生のメカニズムを理解する上で重要である。これは、気道疾患2につながることができます異常な修理を理解するためにも重要である。この方法の目的は、マウス気管粘膜下腺管から新規幹細胞集団を単離するために、粘膜下腺の3修復および再生のメカニズムを識別するために、in vitroおよび in vivoモデル系において 、これらの細胞を配置することです。この生産は、大規模な気道3からダクトおよび基底幹細胞を分離し、アッセイするために使用できる方法を示していますこれは、私たちを許可します嚢胞性線維症、喘息および慢性閉塞性肺疾患などの気道の疾患を研究する。現在、粘膜下腺管細胞を単離するためのメソッドはありませんし、粘膜下腺の再生を研究するin vivoモデルは存在しています。

Protocol

手順の概要 1。気管切開 2。気管を洗浄し、それを切断 3。単一細胞懸濁液に酵素消化し、処理 4。 FACS用染色およびソート 5。 in vivoおよびin vitroモデルのために選別された細胞を処理する 1。気管切開ペントバルビタールの0.1 mg/0.2 ccの腹腔内注射で?…

Discussion

気道からダクトおよび基底細胞を単離するために、この手法は、気道の修復及び再生及び気道疾患の我々の理解を向上させるために重要である。ここで説明する手法は、いくつかの重要なステップがあります。第一は、最適化された酵素消化期間です。第二は、細胞の毛刈りを防止するだけでなく、細胞塊を分割するために徐々に高くゲージ針で継シリアルを介して単一細胞懸濁液を作成す?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我々は、ブロード幹細胞研究センターのFACSを認識し、特に細胞選別を持つ彼らの助けのためにジェシカ·スコールズとフェリシアCodreaに感謝したいと思います。仕事がCIRM RN2-00904-1、K08 HL074229、米国胸部学会/ COPD財団ATS-06から065、懸念財団、UCLAのジョンソン総合がんセンター胸部腫瘍学プログラム/肺がんの胞子、カリフォルニア大学がんによって資金を供給された研究調整委員会とグウィンハーゼンチェリーメモリアル研究所(BG)。

Materials

Name of the reagent Company Catalog number
Complete medium 10:
DMEM-F-12 , 50/50, 1X)
Mediatech 15-090-CV
Hepes (15 mM) Invitrogen 15630
Sodium bicarbonate (3.6mM or 0.03%) Invitrogen 25080
L-glutamine (4 mM) Mediatech 25-005-Cl
Penicillin (100 U/ml) Mediatech 30-001-CI
Streptomycin (100 μg/m) Mediatech 30-001-CI
Amphotericin B (0.25 μg/ ml) Lonza 17-836R
Insulin (10 μg/ml) Sigma I6634
Transferrin (5 μg/ml) Sigma T1147
Cholera toxin (0.1 μg/ml) Sigma C8052
Epidermal Growth Factor (25 ng/ml) BD 354001
Bovine Pituitary Extract (30 μg/ml) Invitrogen 13028-014
Fetal Bovine Serum (5%) Fisher SH3008803HI
Retinoic acid (0.05 μM) Sigma R2625
Growth Factor Reduced Matrigel BD 354230

Table 1. Complete media components.

Name of the reagent Company Catalogue number Comments
Pronase Roche 10165921001 Used at 0.15%:
-o/n at 4 °C digestion to isolate total tracheal cells (for ALI culture)
-4 hr digestion 4 °C to isolate SMG
Dispase BD Biosciences 354235 Used at 16 Units: 30 min at RT
DNase I Sigma DN25 Used at 0.5 mg/ml:
20-30 min at RT

Table 2. Enzymes used for enzymatic digestion of the trachea.

References

  1. Bartlett, J. A., Fischer, A. J., McCray, P. B. Innate immune functions of the airway epithelium. Contrib. Microbiol. 15, 147-163 (2008).
  2. Finkbeiner, W. E. Physiology and pathology of tracheobronchial glands. Respir. Physiol. 118, 77-83 (1999).
  3. Hegab, A. E. A Novel Stem/Progenitor Cell Population from Murine Tracheal Submucosal Gland Ducts with Multipotent Regenerative Potential. Stem Cells. , (2011).
  4. Jeffery, P. K. Morphologic features of airway surface epithelial cells and glands. Am. Rev. Respir. Dis. 128, S14-S20 (1983).
  5. Rock, J. R. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 106, 12771-12775 (2009).
  6. Goldstein, A. S. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. U.S.A. 105, 20882-20887 (2008).
  7. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  8. McQualter, J. L., Yuen, K., Williams, B., Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl. Acad. Sci. U.S.A. 107, 1414-1419 (2010).
  9. Inayama, Y. In vitro and in vivo growth and differentiation of clones of tracheal basal cells. Am. J. Pathol. 134, 539-549 (1989).
  10. You, Y., Richer, E. J., Huang, T., Brody, S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung. Cell. Mol. Physiol. 283, L1315-L1321 (2002).
  11. Wu, X., Peters-Hall, J. R., Bose, S., Pena, M. T., Rose, M. C. Human Bronchial Epithelial Cells Differentiate to 3D Glandular Acini on Basement Membrane Matrix. Am. J. Respir. Cell Mol. Biol. , (2010).
  12. Ooi, A. T. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer. Cancer Res. 70, 6639-6648 (2010).

Play Video

Cite This Article
Hegab, A. E., Luan Ha, V., Attiga, Y. S., Nickerson, D. W., Gomperts, B. N. Isolation of Basal Cells and Submucosal Gland Duct Cells from Mouse Trachea. J. Vis. Exp. (67), e3731, doi:10.3791/3731 (2012).

View Video