The protocol described here is for structural assessment of a wholemount retinal preparation. This includes descriptions of tissue dissection, mounting onto a hydrophilized polytetrafluoroethylene (PTFE) membrane insert, bolus loading with fluorescent markers, and a comparison of fixation with carbodiimide and paraformaldehyde for immunohistochemical analysis of cellular and synaptic components.
Working with delicate tissue can be a complicating factor when performing immunohistochemical assessment. Here, we present a method that utilizes a ring-supported hydrophilized PTFE membrane to provide structural support to both living and fixed tissue during immunohistochemical processing, which allows for the use of a variety of protocols that would otherwise cause damage to the tissue. First, this is demonstrated with bolus loading of fluorescent markers into living retinal tissue. This method allows for quick visualization of targeted structures, while the membrane support maintains tissue integrity during the injection and allows for easy transfer of the preparation for further imaging or processing.
Second, a procedure for antibody staining in tissue fixed with carbodiimide is described. Though paraformaldehyde fixation is more common, carbodiimide fixation provides a superior substrate for the visualization of synaptic proteins. A limitation of carbodiimide is that the resulting fixed tissue is relatively fragile; however, this is overcome with the use of the supporting membrane. Retinal tissue is used to demonstrate these techniques, but they may be applied to any fragile tissue.
Performing immunohistochemistry in delicate intact tissues runs the risk of damage during handling and transfer. This can occur either in brain slices or other thin tissue, such as degenerated retina. Additionally, there are certain methods of tissue fixation that can be advantageous for immunostaining of neuronal structures, but result in compromised structural stability, precluding their use. A particular example of this is carbodiimide-based fixation, which is superior for staining receptors and hormones1-7 but is commonly avoided due to the instability of the fixed tissue.
Here, we describe a procedure which utilizes a hydrophilized PTFE membrane to structurally support delicate tissue, either fixed or unfixed, for a variety of staining techniques. The supporting membrane allows for the manipulation of delicate tissue before and after fixation, allowing for several steps of processing while minimizing the risk of tissue damage. Overall, this simple method to preserve tissue integrity provides the opportunity to use techniques that might otherwise be avoided. As such, this approach could also be successfully used for preparation of wide variety of tissues such as brain slices that become fragile following slicing procedures.
In all experimental procedures, animals were treated according to the regulations in the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and in compliance with protocols approved by Weill Cornell Medical College. Animals were euthanized by carbon dioxide and subsequent cervical dislocation.
1. Dissection of Wholemount Retina
2. Mounting onto Hydrophilized PTFE Membrane Insert
3. Bolus Injection of Isolectin Alexa 488
4. Paraformaldehyde and Carbodiimide Fixation
5. Immunostaining of Retinal Wholemounts
6. Vertical Sectioning of Membrane-mounted Tissue
7. Immunostaining of Retinal Sections
Demonstrated here are two representative experiments that benefit from the use of a hydrophilized PTFE membrane to support wholemount retina during staining procedures. The first experiment, illustrates the method for fast and simple characterization of retinal vasculature, an elaborate network of blood vessels that span across multiple retinal layers (Figure 2). This approach combines bolus loading of isolectin with immersion labeling with SRH. This is an efficient method of labeling living tissue that can be visualized and scanned almost immediately. In the retina, blood vessels can be labeled from superficial to the deep layer (Figure 2E). In contrast to relatively well diffusible SRH, isolectin does not permeate well across the inner limiting membrane (ILM). This limitation is overcome by injecting the solution containing isolectin underneath the ILM with a glass pipette. For SRH blood vessels labeling, it is better to stain the tissue before mounting on the insert. The SRH stains only living tissue and the labeling disappears following fixation with either paraformaldehyde or carbodiimide.
The second experiment (Figure 3), shows the advantages of fixation with carbodiimide over conventional fixation with paraformaldehyde when labeling synaptic proteins. In general, the use of carbodiimide fixative is avoided because it results in relatively fragile tissue. However, mounting the tissue on a membrane ensures sufficient structural support, mitigating this issue. With a short period of fixation with carbodiimide, followed by staining for the synaptic marker PSD-95 immunofluorescence in the IPL had a bright punctate appearance, suggesting that individual synapses were distinguished (Figure 3B). In contrast, when using conventional paraformaldehyde fixative, identification of the synaptic components is less clear (Figure 3E). Similar results were obtained in the retinal cryostat sections (Figures 3C and F).
Figure 1. Versatile use of hydrophilized PTFE membranes. (A) Living retinal wholemount attached to an unmodified 12 mm membrane insert (left) and a quarter of retina attached to an insert with the holder portion removed. See video demonstrating mounting procedure. (B) Living retina on a stage of an upright microscope within a patch-clamp setup. (C) Living retina on a stage of an inverted confocal microscope. (D) Free floating retinal tissue (arrow) and the tissue mounted on membrane insert (arrowhead). Click here to view larger image.
Figure 2. Focal and global labeling of the vasculature in the living retinal wholemount after injection of isolectin Alexa 488. (A) DIC image of the retina with a pipette filled with isolectin above the inner limiting membrane (ILM) prior to injection. (B) The same area as in A after penetration of the pipette beneath the ILM and pressure injection of the pipette solution. The spot with the clearly visible ganglion cells indicate that the solution has been injected between the ILM and the ganglion cell layer. (C-H) Confocal images of a live retinal wholemount labeled with sulforhodamine (SRH, red) and isolectin (green). (C) Isolectin applied with multiple bolus injections (asterisks). The size of the labeled area varies according to the pressure of the injection. SRH labels the entire vasculature. (D) Projection of a z-stack under high magnification shows all layers of vasculature and brightly labeled microglia (arrow). (E) Z-stack from the area highlighted in D rotated 90°. (F-H) A view of the individual layers of blood vessels corresponding to labels in E. OPL-outer plexiform layer, INL-inner nuclear layer, GCL-ganglion cell layer. Scale bars: 50 μm for A-B and D-H, 1 mm for C. Click here to view larger image.
Figure 3. Role of the fixative in the antibody labeling of synaptic structures. Retinal wholemounts fixed with either carbodiimide (A-C) or paraformaldehyde (D-F). (A,D) Ganglion cells expressing green fluorescent proteinin B6.Cg-Tg(Thy1-YFPH)2Jrs/J mice (Jackson Lab. Stock #0033548). Squares indicate areas of high magnification shown in B and E. (B,E) Staining for the synaptic marker PSD-95 (red). Projections are within a narrow focal plane (two confocal images spaced 0.3 μm apart). (C,F) Single confocal image of vertical section stained for PSD-95. Note that the axon terminals of photoreceptors within the OPL are overexposed to show weaker staining for synapses in the IPL (left panels). Inserts (right panels) show high magnifications of the areas highlighted on the left panels. OPL-outer plexiform layer, INL-inner nuclear layer, IPL-inner plexiform layer, GCL-ganglion cell layer. Scale bars = 50 μm in A and D; 10 μm in B, C, E, and F. Click here to view larger image.
The hydrophilized PTFE membrane's high biocompatibility and transparency in solutions is advantageous when working with living tissue. This preparation has been successfully used in earlier work for patch-clamp recordings of light responses8-10. Here, we show how this approach can be adopted for structural analysis of the wholemount retina.
The bolus loading technique can be effectively used for labeling living tissue. This technique is aided by the structural support of the membrane insert. Applications include loading of calcium indicator9, staining of the tissue with the fluorescent markers11, or labeled ligands12.
Fixed tissue processing can also benefit from the use of a supporting membrane. Differences in the appearance of postsynaptic density proteins depend on fixation time and the nature of the fixative5. Longer fixation times lead to excellent tissue preservation but poor antibody recognition of synaptic proteins that are cross-linked by the fixative. Shorter fixation times result in poor tissue preservation but bright punctate labeling. Similar results have been obtained for many other synaptic structural proteins and ion channels by different groups1-7. Using the membrane for structural support enables the use of carbodiimide to simultaneously achieve short fixation times, well-defined bright labeling of synaptic structures and adequate overall tissue quality for both wholemount and cryostat section preparations. The preparations are stable and easy to handle, with reproducible results.
Several critical steps should be carefully performed to ensure high quality and reproducible results. For bolus injections and electrophysiological recordings, it is important to remove as much of the vitreous as possible when dissecting the retina. The absence of the vitreous will enable easy access of the patch pipette to the cells. The vitreous does not interfere with the described immunohistochemistry techniques. To maintain firm adherence, fixation should be done after the tissue has already been attached to the membrane. For cryostat sectioning, the sucrose solutions must be completely removed prior to adding the embedding OCT medium. Failure to remove the liquid may result in splitting the cut section along the frozen tissue and damaging it. The slides with the attached sections should be kept for 2-3 min on a heating platform. If this step is not performed, the tissue may detach from the slide during the staining procedure.
There are several limitations of this technique. First, once the tissue adheres to the membrane, it cannot be removed without incurring damage, as the tissue is enmeshed within the membrane. Second, tissue cannot be attached to the membrane after it has been fixed. Third, while the membrane is fully transparent in water-based mediums, the membrane may look slightly opaque when in mounting medium, compromising light transmission. This is mitigated by sectioning, since this removes the membrane from the path of light transmitted to the tissue.
The authors have nothing to disclose.
This work was supported by NIH grant R01-EY020535 (B.T.S), International Retinal Research Foundation and Karl Kirchgessner Foundation (B.T.S).
Millicell Cell Culture Insert, 12 mm, hydrophilic PTFE (Biopore), 0.4 μm |
Millipore | PICM01250 | |
Insulin syringe, 1 ml | Beckton Dickinson | 309659 | |
Scissors | Fine Science Tools | 15003-08 | dissection |
Forceps, Dumont #55, inox | Fine Science Tools | 11255-20 | dissection |
Cryostat | Leica | various | |
Confocal Microscope System | Nikon | various | |
Capillary glass | World Precision Instruments | 1B150F-4 | |
P-97 Flaming/Brown Micropipette Puller | Sutter Instrument Co. | ||
Picospritzer III | Parker Hannifin | ||
Glass Bottom Culture Dishes | MatTek Corporation | P35G-0-14-C | |
Petri dish | Falcon | 1008 | |
Disposable Graduated Transfer Pipettes | VWR | 16001-180 | |
Multiwell plates, 24-well | Beckton Dickinson | 351147 | |
Cover glass, #1 | Electron Microscopy Sciences | 72200-30 | |
Polysine adhesion slides | Electron Microscopy Sciences | 63412-01 | |
Microscope slides | Globe | 1301 | |
Liquid Blocker | Electron Microscopy Sciences | 71312 | |
VECTASHIELD mounting medium | Vector Laboratories | H-1000 | |
OCT medium | Sakura | 4583 | |
Parafilm laboratory film | Fisher | 13-374-10 | |
Dow Corning high vacuum grease | Sigma-Aldrich | Z273554 | |
Mouse anti-PSD95 | Millipore | MABN68 | antibody |
Donkey anti-mouse Alexa 568 | Invitrogen | A10037 | antibody |
Isolectin Alexa 488 | Invitrogen | I21411 | |
Chemiblocker | Chemicon | 2170S | |
Triton X-100 | Sigma-Aldrich | T9284 | |
Sulforhodamine | Sigma-Aldrich | 341738 | |
Carbodiimide | Thermo Scientific | 22980 | EDC |
Paraformaldehyde | Sigma-Aldrich | P6148 |