Summary

组织工程:建设多细胞三维支架的层状细胞片交货

Published: October 03, 2014
doi:

Summary

For creation of highly organized structures of complex tissue, one must assemble multiple material and cell types into an integrated composite. This combinatorial design incorporates organ-specific layered cell sheets with two distinct biologically-derived materials containing a strong fibrous matrix base, and endothelial cells for enhancing new vessels formation.

Abstract

许多组织中,如成人心,都无法破坏后,以充分再生。2,3策略在组织工程中提出的创新,以协助身体恢复和修复。例如,TE方法可能能够减轻心肌梗死(MI)后心脏重塑和可能增加总的心脏功能,以接近正常的预MI水平。4与任何功能性组织,心脏组织的再生成功涉及适当的递送多种细胞类型与环境因素有利于整合植入的细胞/组织移植和生存。工程化组织应处理的多个参数包括:评价为运载工具,其对细胞存活的影响,材料强度和细胞 – 组织机构的便利可溶信号,细胞 – 细胞相互作用,并且基质材料。研究采用直接注射移植的细胞不仅无视这些基本要素。2,5,6一种组织设计结合这些成分还有待开发。这里,我们提出的使用图案化的细胞片层的分层与两种不同类型的含有靶器官的细胞类型和内皮细胞用于增强新血管形成中的“组织”生物衍生材料集成设计的例子。虽然这些研究集中在心脏样组织的产生,此组织设计可以应用于许多器官比心脏以最小的设计和材料的变化等,并意指是断开的,现成的产品用于再生疗法。该协议包含五个详细步骤。一种温度敏感聚(N -isopropylacrylamide)(PNIPAAM)用于涂层的组织培养皿。然后,特定组织细胞的涂装板/微图案的表面的表面上培养,以形成细胞片层具有很强的横向粘连。第三,基础矩阵的组织由多孔基体结合新生血管permissi创建已经凝胶和内皮细胞。最后,将细胞片从PNIPAAm的涂覆菜肴解除,并转移到基座元件,使得整个结构。

Introduction

Injection of cells and/or single materials alone has shown variable success in other organ systems and limited success in cardiac regeneration.5,7-12 Currently, stem cell-derived cells are delivered to damaged tissue using a variety of delivery methods including: direct cell injection into tissue and perfusion into the blood supply.13-17 Others have implanted cells alone, materials alone and/or in combination with material carriers to help regenerate damaged organs.18-21 This design combines multiple strategies that provide material strength, patterning in multiple materials and multiple cell types.

Specifically, the base acellularized fibrous matrix provides the foundational physical strength to the construct, making it suitable for suturing in into the patient, if necessary. The void spaces in the base matrix are filled with endothelial cells in a neovascular permissive hydrogel22 for rapidly establishing vascularization of the implanted construct. This composite is then integrated with pre-patterned cell sheets that allow enhanced cell-to-cell communication, more closely mimic the native tissue.1,23-25 The overall production process for the layered cellular patch is outlined by the flowchart in Figure 1.

Protocol

1,创建PNIPAAM涂层板的解散2.6克PNIPAAM的2毫升60%甲苯/ 40%正己烷溶液。 加热到60℃,将混合物搅拌10分钟,直到PNIPAAM溶解。 切滤纸为60毫米直径的圆和地点纸张布氏漏斗。 过滤该溶液,通过用布氏漏斗放入预先称重的玻璃烧杯(不使用塑料,如己烷将熔化的塑料)。 将烧杯中,内容为钟真空(24磅)的O / N(16小时)。注:直到残留物用异丙醇反应,它会氧化?…

Representative Results

的流程图( 图1)示出了制作的多层片的整体方法。细胞片从PNIPAAM处理板通过降低温度低于32℃的分离。然后将细胞板置于含有接种到底层的纤维基体( 图1)在内皮细胞中的交联水凝胶的顶部。经预处理的温敏板,也可用于创建细胞片。特殊的拓扑表面使用专门的模式( 即对齐)单元30。 基底的纤维基质可以由脱细胞天然的组织基质?…

Discussion

在该协议中的关键步骤包括:涂布板面与温敏聚合物和冷却板后操纵的细胞片层。因为不同的细胞表现出不同的物理性质,如粘合性,升降时间应为每个不同的细胞类型进行了优化。本协议的第二个,也是最显著挑战性成分,集中在电池板,为组织组装方法的一个重要方面的操作。在电池板的单细胞层是相当脆弱的,并且可以很容易地撕开,如果操作用钳子。此外,当细胞片层中的地方不被保持?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by a New Faculty Award II from the California Institute of Regenerative Medicine (CIRM; RN2-00921-1), NIH-funded National Research Award (F32-HL104924), and CIRM Training Grant (TG21163). Materials were provided by: Glycosan Biosystems Inc / BioTime and Dr. Stephen Badylak (University of Pittsburgh)

Materials

Table of Reagents:
Reagent Company Catalogue number Comments
Calcein-AM Invitrogen C3099 Cell tracker / live dye
Lysotracker Red Invitrogen L7528 Cell tracker
Neutral Red Sigma N7005 Visible Cell dye
pNIPAAM Sigma Aldrich 412780250 Poly(N-isopropylacrylamide)
Toluene Sigma Aldrich 244511-1L
Hexane Sigma Aldrich 296090-1L
RAOSMC Lonza R-ASM-580 Rat Aortic Smooth Muscle Cells
SmGM2 Lonza CC-4149 Smooth Muscle Media
HUVEC Invitrogen C-003-5C Human Venous Endothelial Cells
HyStem Glycosan/Biotime ————
Isopropyl alcohol VWR International BDH1133-4LP
Trypsin Corning Cellgro 25-053-C1
PBS Gibco 14287-072
FBS Gibco 16140-071
Table of Specific Equipment:
 Equipment   Company   Catalogue number   Comments (optional) 
 Filter paper   Ahlstrom   6310-0900 
 Buchner Funnel   Sigma Aldrich   Z247308 
 UpCell Plates   Nunc   2014-11 
 UV light.   Jelight Company   UVO Cleaner Model No.42 

References

  1. Ohashi, K., Okano, T. Functional tissue engineering of the liver and islets. Anat Rec (Hoboken). 297, 73-82 (2014).
  2. Chen, Q. Z., Harding, S. E., Ali, N. N., Lyon, A. R., Boccaccini, A. R. Biomaterials in cardiac tissue engineering: Ten years of research survey. Mat Sci Eng R. 59, 1-37 (2008).
  3. Jakob, P., Landmesser, U. Current status of cell-based therapy for heart failure. Curr Heart Fail Rep. 10, 165-176 (2013).
  4. Tongers, J., Losordo, D. W., Landmesser, U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 32, 1197-1206 (2011).
  5. Etzion, S., et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol. 33, 1321-1330 (2001).
  6. Masuda, S., Shimizu, T., Yamato, M., Okano, T. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev. 60, 277-285 (2008).
  7. Koh, G. Y., Soonpaa, M. H., Klug, M. G., Field, L. J. Strategies for myocardial repair. J Interv Cardiol. 8, 387-393 (1995).
  8. Li, R. K., et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg. 119, 368-375 (2000).
  9. Muller-Ehmsen, J., et al. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation. , 105-1720 (2002).
  10. Reinecke, H., Zhang, M., Bartosek, T., Murry, C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation. , 100-193 (1999).
  11. Roell, W., et al. Cellular cardiomyoplasty improves survival after myocardial injury. Circulation. 105, 2435-2441 (2002).
  12. Soonpaa, M. H., et al. Potential approaches for myocardial regeneration. Ann N Y Acad Sci. 752, 446-454 (1995).
  13. Akins, R. E. Can tissue engineering mend broken hearts. Circ Res. 90, 120-122 (2002).
  14. Goodell, M. A., et al. Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci. 938, 208-218 (2001).
  15. Menasche, P., et al. Myoblast transplantation for heart failure. Lancet. 357, 279-280 (2001).
  16. Murry, C. E., Wiseman, R. W., Schwartz, S. M., Hauschka, S. D. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest. 98, 2512-2523 (1172).
  17. Orlic, D., et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci. 938, 221-229 (2001).
  18. Elia, R., et al. Silk-hyaluronan-based composite hydrogels: a novel, securable vehicle for drug delivery. J Biomater Appl. 27, 749-762 (2013).
  19. Kai, D., et al. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater. , (2014).
  20. Hong, H. J., et al. Tracheal reconstruction using chondrocytes seeded on a poly(l-lactic-co-glycolic acid)-fibrin/hyaluronan. J Biomed Mater Res A. , (2014).
  21. Serpooshan, V., et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials. 34, 9048-9055 (2013).
  22. Turner, W. S., et al. Cardiac tissue development for delivery of embryonic stem cell-derived endothelial and cardiac cells in natural matrices. J Biomed Mater Res B Appl Biomater. 100, 2060-2072 (2012).
  23. Sato, M., Yamato, M., Hamahashi, K., Okano, T., Mochida, J. Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken). 297, 36-43 (2014).
  24. Sawa, Y., Miyagawa, S. Present and future perspectives on cell sheet-based myocardial regeneration therapy. Biomed Res Int. 2013, 583912 (2013).
  25. Demirbag, B., Huri, P. Y., Kose, G. T., Buyuksungur, A., Hasirci, V. Advanced cell therapies with and without scaffolds. Biotechnol J. 6, 1437-1453 (2011).
  26. Song, J. J., Ott, H. C. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 17, 424-432 (2011).
  27. Badylak, S. F., et al. The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant. 15, S29-S40 (2006).
  28. Wang, Y., et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 53, 293-305 (2011).
  29. Gilbert, T. W., et al. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. 29, 4775-4782 (2008).
  30. Luna, J. I., et al. Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells. Tissue Eng Part C Methods. 17, 579-588 (2011).

Play Video

Cite This Article
Turner, W. S., Sandhu, N., McCloskey, K. E. Tissue Engineering: Construction of a Multicellular 3D Scaffold for the Delivery of Layered Cell Sheets. J. Vis. Exp. (92), e51044, doi:10.3791/51044 (2014).

View Video