Summary

Forbundne Helcelle optagelser i Organotypiske hippocampusskiver

Published: September 28, 2014
doi:

Summary

Pair recordings are simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling precise electrophysiological and pharmacological characterization of the synapses between individual neurons. Here we describe the detailed methodology and requirements for establishing this technique in organotypic hippocampal slice cultures in any laboratory equipped for electrophysiology.

Abstract

Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.

Introduction

Glutamatreceptorer medierer størstedelen af ​​excitatorisk synaptisk transmission i centralnervesystemet synapser. De to store undertyper af ionotrope glutamatreceptorer lokaliseret ved ryggen leder af den postsynaptiske membran, er N-methyl-D-aspartat (NMDA) og α-amino-3-hydroxy-5-methylisoxazol-4-proprionic acid (AMPA)-receptorer. Ved hvilende membranpotentialer, AMPA-receptorer bære det meste af den postsynaptiske strøm under synaptisk transmission. I hippocampus, NMDA-receptoren spiller en central rolle i udløsningen ændringer i antallet af AMPA-receptorer i den postsynaptiske membran: ved at fungere som en "tilfældighed detektor" 1 at indlede ændringer i synaptisk styrke 1 NMDA-receptoren deltager i synaptiske mekanismer der menes at understøtte indlæring og hukommelse på subcellulært niveau. Som reaktion på depolarisering af den postsynaptiske neuron parallelt med præsynaptiske transmitterfrigivelse, calcium trænger ind via NMDAreceptoren indlede AMPA-receptoren indsættelse eller fjernelse 2. Disse receptor dynamik ligger til grund synapse plasticitet: en stigning i synaptisk styrke er langsigtet potensering 2,3 (LTP), mens en formindskelse i synaptisk styrke er langvarig depression 4 (LTD). Derfor AMPA-receptoren bevægelse menes at være ansvarlig for synaptisk plasticitet ekspression, mens NMDA-receptorer menes at regulere dens induktion.

Fastlæggelse af de præcise mekanismer, der ligger synaptisk transmission og plasticitet kræver studere små populationer af synapser, helst enkelt synapser. Mens nogle synapser er meget velegnet til undersøgelse på dette niveau, fx blomsterbægeret af Held 5, for de fleste synaptiske befolkninger dette er yderst vanskelig på grund af den lille og diffus karakter synaptiske forbindelser. To store elektrofysiologi teknikker er blevet udviklet til at undersøge enkelt synaptiske forbindelser: Den første er minimal stimulation, Where en præsynaptisk fibre antages stimuleret ekstracellulært. Den anden teknik er parret optagelser, hvor to samtidige helcelleproteiner optagelser fra synaptisk forbundne neuroner udføres. En stor fordel ved minimal stimulation er, at den er hurtig og relativt enkel at udføre, der involverer placering af en ekstracellulær stimulerende elektrode i axonal tarmkanalen samtidig optagelse fra en postsynaptisk neuron. Den primære bekymring, når du bruger denne teknik er, at pålidelige stimulering af en enkelt celle sjældent kan garanteres retssag efter retssagen.

I løbet af de sidste femten år har vi rutinemæssigt anvendes parret hel-celle optagelser fra to synaptisk forbundet pyramideneuroner 6-17. Den største fordel ved denne teknik er, at kun én præsynaptiske neuron konsekvent og pålideligt stimuleres. Det giver også mulighed for ikke kun elektrofysiologisk karakterisering, men også farmakologisk manipulation af den præsynaptiske neuron 6,18 </ Sup>. Sandsynligheden af synaptisk forbindelse mellem neuroner er lav, hvilket gør forbundne par vanskeligt at opnå 19. Anvendelsen af organotypiske hjerne skivekulturer omgår denne hindring som synaptisk forbindelse kan genoprette in vitro og desuden af arten af den resulterende forbindelse er den samme som i nativ hjernevæv 20. Desuden organotypiske kulturer udtrykker LTP, LTD 7-10,12-15,21 og andre former for kortvarig synaptisk plasticitet, herunder parret-puls lettelse (PPF) og depression (PPD) 6,22,23, så plasticitetsmodeller mekanismer til studeres i par af neuroner. Her beskriver vi den detaljerede metodologi, der er involveret i en vellykket nå parrede optagelser i denne in vitro-system. Denne information kan let tilpasses til andre eksperimentelle systemer, herunder akutte skiver og andre hjerneregioner.

Protocol

Dyreetiske Statement: Beskrevet i dette manuskript protokoller følge de retningslinjer dyr pleje oprettet af University of Auckland og Stanford University. P7 rotteunger blev aflivet ved hurtig halshugning. Hippocampus dissektion derefter straks udføres som beskrevet nedenfor. 1. organotypiske hippocampus Slice kultur Forberedelse Forbered dissektion Medium (bruges kun til at dissekere hjernen). Kombiner 200 ml Minimum Essential Medium, 2 ml…

Representative Results

Synaptic tilslutningsmuligheder er tydeligt ved at stimulere den præsynaptiske neuron at fyre en handling potentiale ved at passere en depolariserende strøm puls (typisk 20-50 Pa for 20 ms) via optagelse elektrode. Den postsynaptiske aktuelle spor undersøges derefter for tilstedeværelse af en monosynaptisk EPSC fremkaldt ved kort (<5 ms) og konsekvente latenstider efter toppen af præsynaptisk virkningspotentiale (figur 3A). I de fleste eksperimenter flere postsynaptiske neuroner testes, før en …

Discussion

Her har vi beskrevet kravene til oprettelse af vellykkede parrede helcelleproteiner optagelser i organotypiske hippocampus skivekulturer. Forbundne optagelser kan også udføres på flere præparater, herunder akutte skiver og dissocierede dyrkningssystemer 26,27. Mens fokus her har været på induktionen af ​​længere former for synaptisk plasticitet (nemlig LTP og LTD), er det vigtigt at fremhæve, at parret helcelleproteiner optagelser i organotypisk, akut skive og dissocieret cellepræparater har give…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank the members of the Montgomery and Madison labs for helpful discussion. We acknowledge the funding received from the following sources in this research: NFNZ, AMRF, Marsden Fund, HRC, and NIH.

Materials

Organotypic cultures Paired recordings
Minimum Essential Medium Stable motorized micromanipulators 
Penicillin-Streptomycin solution  Shallow tissue bath
HEPES buffer solution DIC camera
1M Tris stock solution  Amplifier
Hank’s Balanced Salt Solution Computer
Horse Serum  Vibration isolation table
plastic-coated miniature spatulas  Upright microscope
soft paintbrush  Data acquistion and analysis software
manual tissue chopper Electrode puller
#2 filter paper Faraday cage
#5  forceps
Membrane inserts
CO2 incubator 
Dissection hood
Class II hood

References

  1. Dingledine, R., Borges, K., Bowie, D., Traynelis, S. F. The glutamate receptor ion channels. Pharmacology Reviews. 51, 7-61 (1999).
  2. Malenka, R. C., Nicoll, R. A. Long-term potentiation – A decade of progress. Science. 285, 1870-1874 (1999).
  3. Bliss, T. V. P., Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology. 232, 331-356 (1973).
  4. Dudek, S. M., Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences USA. 89, 4363-4367 (1992).
  5. Borst, J. G., Soria van Hoeve, J. The calyx of held synapse: from model synapse to auditory relay. Annual Reviews in Physiology. 74, 199-224 (2012).
  6. Pavlidis, P., Madison, D. V. Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. Journal of Neurophysiology. 81, 2787-2797 (1999).
  7. Pavlidis, P., Montgomery, J. M., Madison, D. V. Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. Journal of Neuroscience. 20 (12), 4497-4505 (2000).
  8. Montgomery, J. M., Pavlidis, P., Madison, D. V. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron. 29, 691-701 (2001).
  9. Montgomery, J. M., Madison, D. V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron. 33, 765-777 (2002).
  10. Montgomery, J. M., Selcher, J. C., Hansen, J. E., Madison, D. V. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. BMC Neuroscience. 6, 48 (2005).
  11. Waites, C. L., et al. Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. Journal of Neuroscience. 29 (14), 4332-4345 (2009).
  12. Emond, M., et al. AMPA receptor subunits define properties of state-dependent synaptic plasticity. Journal of Physiology. 588, 1929-1946 (2010).
  13. Li, D., et al. SAP97 directs NMDA receptor spine targeting and synaptic plasticity. Journal of Physiology. 589, 4491-4510 (2011).
  14. Genoux, D., Bezerra, P., Montgomery, J. M. Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. European Journal of Neuroscience. 33 (10), 1761-1770 (2011).
  15. Selcher, J. C., Xu, W., Hanson, J. E., Malenka, R. C., Madison, D. V. Glutamate receptor subunit GluA1 is necessary for long-term potentiation and synapse unsilencing, but not long-term depression in mouse hippocampus. Brain Research. 1435, 8-14 (2012).
  16. Arons, M. H., et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. Journal of Neuroscience. 32 (43), 14966-14978 (2012).
  17. Montgomery, J. M., Madison, D. V. Discrete synaptic states define a major mechanism of synapse plasticity. Trends in Neuroscience. 27 (12), 744-750 (2004).
  18. Miles, R., Poncer, J. C. Pair recordings from neurones. Current Opinion in Neurobiology. 6 (3), 387-394 (1996).
  19. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations and LTP. Science. 252 (5006), 722-724 (1991).
  20. Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends in Neuroscience. 20 (10), 471-477 (1997).
  21. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods. 37 (2), 173-182 (1991).
  22. Debanne, D., Guérineau, N. C., Gähwiler, B. H., Thompson, S. M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. Journal of Physiology. 491, 163-176 (1996).
  23. Debanne, D., Gähwiler, B. H., Thompson, S. M. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. Proceedings of the National Academy of Sciences U S A. 93 (20), 11225-11230 (1996).
  24. Malinow, R., Tsien, R. W. Presynaptic enhancement shown by whole cell recordings of long-term potentiation in hippocampal slices. Nature. 346 (6280), 177-180 (1990).
  25. DeBello, W. M., et al. SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature. 373 (6515), 626-630 (1995).
  26. Bekkers, J. M., Stevens, C. F. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proceedings of the National Academy of Sciences U S A. 87, 5359-5362 (1990).
  27. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science. 252, 722-724 (1991).
  28. Debanne, D., Guérineau, N. C., Gähwiler, B. H., Thompson, S. M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology. 73 (3), 1282-1294 (1995).
  29. Mitra, A., Blank, M., Madison, D. V. Developmentally altered inhibition in Ts65Dn, a mouse model of Down syndrome. Brain Research. 1440, 1-8 (2012).
  30. Hanson, J. E., Madison, D. V. Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. Journal of Neuroscience. 27 (15), 4014-4018 (2007).
  31. Hanson, J. E., Blank, M., Valenzuela, R. A., Garner, C. C., Madison, D. V. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down’s syndrome. Journal of Physiology. 579, 53-67 (2007).

Play Video

Cite This Article
Fourie, C., Kiraly, M., Madison, D. V., Montgomery, J. M. Paired Whole Cell Recordings in Organotypic Hippocampal Slices. J. Vis. Exp. (91), e51958, doi:10.3791/51958 (2014).

View Video