Summary

Dynamisk kontrast Forbedret Magnetic Resonance Imaging af en ortotopisk kræft i bugspytkirtlen Mouse Model

Published: April 18, 2015
doi:

Summary

The goal of this protocol is to apply dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for orthotopic pancreatic tumor xenografts in mice. DCE-MRI is a non-invasive method to analyze microvasculature in a target tissue, and useful to assess vascular response in a tumor following a novel therapy.

Abstract

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been limitedly used for orthotopic pancreatic tumor xenografts due to severe respiratory motion artifact in the abdominal area. Orthotopic tumor models offer advantages over subcutaneous ones, because those can reflect the primary tumor microenvironment affecting blood supply, neovascularization, and tumor cell invasion. We have recently established a protocol of DCE-MRI of orthotopic pancreatic tumor xenografts in mouse models by securing tumors with an orthogonally bent plastic board to prevent motion transfer from the chest region during imaging. The pressure by this board was localized on the abdominal area, and has not resulted in respiratory difficulty of the animals. This article demonstrates the detailed procedure of orthotopic pancreatic tumor modeling using small animals and DCE-MRI of the tumor xenografts. Quantification method of pharmacokinetic parameters in DCE-MRI is also introduced. The procedure described in this article will assist investigators to apply DCE-MRI for orthotopic gastrointestinal cancer mouse models.

Introduction

Det overordnede mål med denne metode er at anvende dynamisk kontrast forbedret magnetisk resonans (DCE-MRI) for ortotopisk pancreas tumorxenotransplantater i mus. DCE-MRI er en ikke-invasiv metode til at vurdere mikrovaskulaturen i et målvæv ved at overvåge ændringen i MR kontrast over en vis periode efter injektion. DCE-MRI er blevet anvendt til at diagnosticere maligne tumorer og vurdere tumorrespons til forskellige terapier 1-4. Kvantitativ DCE-MRI har fremlagt høj reproducerbarhed 5. At kvantificere farmakokinetiske parametre for et MR-kontrastmiddel i et målvæv skal alle DCE-MR-billeder erhvervet på forskellige tidspunkter og T1 kort opnået før kontrast injektion coregistered 6. Men på grund af respiratoriske og peristaltiske bevægelser i maveregionen, er kvantitativ DCE-MRI havde begrænset ansøgning om gastrointestinale tumorer.

Orthotopisk pancreas tumormodeller er blevet anvendt til at vurderepancreas-tumor respons efter biologiske terapier og kemoterapier 7,8. Ortotopisk tumormodeller anses overlegen konventionelle subkutane modeller, da mikromiljøet i den oprindelige tumorsted reflekteres og derved human tumor respons på behandlingen kan mere nøjagtigt forudsiges. Imidlertid er muse pancreas placeret i den øverste venstre kvadrant af maven, så kvantitativ DCE-MRI af ortotopisk pancreas tumorxenotransplantater hos mus er ikke let gennemføres.

Vi har etableret en protokol af DCE-MRI af abdominale tumorer hos mus ved fastsættelse af tumorer ved hjælp af en retvinklet bøjet plastik bord for at forhindre bevægelse overførsel fra brystregionen 9. Det pres, som dette forum blev lokaliseret på maveregionen og har ikke medført åndedrætsbesvær. En automatiseret billede coregistration teknik er blevet godkendt til DCE-MRI af abdominale organer i en fri vejrtrækning tilstand, men det udfører effectively, når målregionerne bevæger sig langsomt og regelmæssigt 10. Respirationsfrekvens af dyr er variabel under billedbehandling, vil være nødvendigt så fysisk tilbageholdenhed i maveregionen at hente pålidelige farmakokinetiske parametre i ortotopisk pancreas tumor musemodeller. Vi har med succes kvantificeret de farmakokinetiske parametre af et MR-kontrastmiddel i ortotopisk pancreas tumorxenotransplantater hjælp af ortogonalt bøjet plast bord i DCE-MRI 11-13. Her præsenterer vi den detaljerede procedure for orthotopisk pancreas tumor modellering, DCE-MRI af tumorxenografter i mus og kvantificering af farmakokinetiske parametre.

Protocol

Alle procedurer blev godkendt af Institutional Animal Care og brug Udvalg ved University of Alabama i Birmingham. 1. ortotopisk Pancreas Tumor Mouse Modeling Kultur standard humane pancreas-cancer-cellelinier i Dulbeccos modificerede Eagle medium (DMEM) suppleret med 10% føtalt bovint serum. Bevar alle kulturer ved 37 ° C i fugtig atmosfære med 5% CO2. Brug 8-10 uge gammel kvinde alvorlig kombineret immunsvækkede mus. Placer animal bure på 12 timers lys o…

Representative Results

Humane pancreas tumorceller vokse med held i muse pancreas skabe en fast tumor. Figur 1 viser fotografier af (A) en normal pancreas hvor tumorcelle injiceres, og (B) en repræsentativ mus bærer en orthotopisk pankreatisk tumor xenograft (MIA PaCa-2 ). Tumor ligger i den øverste venstre kvadrant af maven, ved siden af ​​milten. Det tager normalt 2 – 4 uger for tumorerne til at vokse op til 5 – 7 mm i diameter efter celle implantation. Bevægelse af ortotopisk pancreas t…

Discussion

Vi har indført de detaljerede metoder til orthotopisk pancreas tumor modellering ved hjælp af immunsvækkede mus, DCE-MRI af abdominale tumorer i mus og kvantificering af dets kinetiske parametre. I orthotopisk pancreas tumor modellering, skal man passe på, når du indsætter en nål i halen af ​​bugspytkirtlen. Hvis det lykkes, vil cellerne blive overført til lederen af ​​bugspytkirtlen skabe en lille bleb. Ved anvendelse af en retvinklet bøjet plast bord, er det vigtigt at bekræfte, at svulsten er placer…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Authors thank Jeffrey Sellers to assist orthotopic pancreatic cancer mouse modeling. This work was supported by Research Initiative Pilot Awards from the Department of Radiology at UAB and NIH grants 2P30CA013148 and P50CA101955.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
DMEM Invitrogen 11965-118
Fetal bovine serum Harlan Laboratories BT-9501
Betadine Purdue products 67618-153-01
5-0 Prolene sutures Ethicon 8720H
9.4T MR scanner Bruker Biospin Corporation BioSpec 94/20 USR
Gadoteridol Bracco Diagnostics Inc NDC 0270-1111-03
Micro-polyethelene tube Strategic Applications, Inc #PE-10-25
30G blunt tip needle Strategic Applications, Inc 89134-194
Monitoring and gating system SA instruments, Inc Model 1030 This is an MR compatiable system to measure resiratory rating and body temperature of small animals at the same time.
Syringe pump New Era Pump Systems, Inc. NE-1600

References

  1. Ergul, N., et al. Assessment of multifocality and axillary nodal involvement in early-stage breast cancer patients using 18F-FDG PET/CT compared to contrast-enhanced and diffusion-weighted magnetic resonance imaging and sentinel node biopsy. Acta Radiol. , (2014).
  2. Park, J. J., et al. Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging. , (2014).
  3. Nguyen, H. T., et al. Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters. J Magn Reson Imaging. 10, (2014).
  4. Teo, Q. Q., Thng, C. H., Koh, T. S., Ng, Q. S. Dynamic Contrast-enhanced Magnetic Resonance Imaging: Applications in Oncology. Clin Oncol (R Coll Radiol). , (2014).
  5. Zhang, X., Pagel, M. D., Baker, A. F., Gillies, R. J. Reproducibility of magnetic resonance perfusion imaging. PLoS One. 9 (2), e89797 (2014).
  6. Kim, H., et al. Pancreatic adenocarcinoma: a pilot study of quantitative perfusion and diffusion-weighted breath-hold magnetic resonance imaging. Abdominal imaging. , (2014).
  7. Derosier, L. C., et al. Combination Treatment with TRA-8 Anti Death Receptor 5 Antibody and CPT-11 Induces Tumor Regression in an Orthotopic Model of Pancreatic Cancer. Clin Cancer Res. 13 (18), 5535s-5543s (2007).
  8. Derosier, L. C., et al. TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth. Mol Cancer Ther. 6 (12), 3198-3207 (2007).
  9. Kim, H., et al. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res. 68 (20), 8369-8376 (2008).
  10. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 29 (1), 196-205 (2010).
  11. Kim, H., et al. Early therapy evaluation of combined cetuximab and irinotecan in orthotopic pancreatic tumor xenografts by dynamic contrast-enhanced magnetic resonance imaging. Mol Imaging. 10 (3), 153-167 (2011).
  12. Kim, H., et al. Antagonistic effects of anti-EMMPRIN antibody when combined with chemotherapy against hypovascular pancreatic cancers. M Mol Imaging Biol. 16 (1), 85-94 (2014).
  13. Kim, H., et al. Dual combination therapy targeting DR5 and EMMPRIN in pancreatic adenocarcinoma. Mol Cancer Ther. 11 (2), 405-415 (2012).
  14. Moyher, S. E., Vigneron, D. B., Nelson, S. J. Surface coil MR imaging of the human brain with an analytic reception profile correction. J Magn Reson Imaging. 5 (2), 139-144 (1995).
  15. Voigt, T., Nehrke, K., Doessel, O., Katscher, U. T1 corrected B1 mapping using multi-TR gradient echo sequences. Magn Reson Med. 64 (3), 725-733 (2010).
  16. Liu, H., Liu, Y., Zhao, Z., Zhang, L., Qiu, T. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI. Medical physics. 41 (8), 082303 (2014).
  17. Sarkar, S., Das, S. Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy–a differential evolution approach. IEEE Trans Image Process. 22 (12), 4788-4797 (2013).
  18. Yankeelov, T. E., et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging. 23 (4), 519-529 (2005).
  19. Cardenas-Rodriguez, J., Howison, C. M., Pagel, M. D. A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution. Magn Reson Imaging. 31 (4), 497-507 (2013).
  20. Tofts, P. S., et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 10 (3), 223-232 (1999).
  21. Yankeelov, T. E., et al. Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data. Magn Reson Med. 57 (2), 353-361 (2007).
  22. Cao, R. Y., Amand, T., Ford, M. D., Piomelli, U., Funk, C. D. The Murine Angiotensin II-Induced Abdominal Aortic Aneurysm Model: Rupture Risk and Inflammatory Progression Patterns. Front Pharmacol. 1 (9), (2010).
  23. Parker, G. J., et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 56 (5), 993-1000 (2006).
  24. Tseng, W., Leong, X., Engleman, E. Orthotopic mouse model of colorectal cancer. J Vis Exp. (10), 484 (2007).
  25. Bhullar, J. S., et al. A true orthotopic gastric cancer murine model using electrocoagulation. J Am Coll Surg. 217 (1), 64-70 (2013).

Play Video

Cite This Article
Kim, H., Samuel, S., Totenhagen, J. W., Warren, M., Sellers, J. C., Buchsbaum, D. J. Dynamic Contrast Enhanced Magnetic Resonance Imaging of an Orthotopic Pancreatic Cancer Mouse Model. J. Vis. Exp. (98), e52641, doi:10.3791/52641 (2015).

View Video