Summary

Kvantifisering av protein uttrykk og samlokalisering Bruke multiplekset Immuno-histokjemisk Farging og multispektrale bildebehandling

Published: April 08, 2016
doi:

Summary

Immunohistochemistry is a powerful lab technique for evaluating protein localization and expression within tissues. Current semi-automated methods for quantitation introduce subjectivity and often create irreproducible results. Herein, we describe methods for multiplexed immunohistochemistry and objective quantitation of protein expression and co-localization using multispectral imaging.

Abstract

Immunohistochemistry is a commonly used clinical and research lab detection technique for investigating protein expression and localization within tissues. Many semi-quantitative systems have been developed for scoring expression using immunohistochemistry, but inherent subjectivity limits reproducibility and accuracy of results. Furthermore, the investigation of spatially overlapping biomarkers such as nuclear transcription factors is difficult with current immunohistochemistry techniques. We have developed and optimized a system for simultaneous investigation of multiple proteins using high throughput methods of multiplexed immunohistochemistry and multispectral imaging. Multiplexed immunohistochemistry is performed by sequential application of primary antibodies with secondary antibodies conjugated to horseradish peroxidase or alkaline phosphatase. Different chromogens are used to detect each protein of interest. Stained slides are loaded into an automated slide scanner and a protocol is created for automated image acquisition. A spectral library is created by staining a set of slides with a single chromogen on each. A subset of representative stained images are imported into multispectral imaging software and an algorithm for distinguishing tissue type is created by defining tissue compartments on images. Subcellular compartments are segmented by using hematoxylin counterstain and adjusting the intrinsic algorithm. Thresholding is applied to determine positivity and protein co-localization. The final algorithm is then applied to the entire set of tissues. Resulting data allows the user to evaluate protein expression based on tissue type (ex. epithelia vs. stroma) and subcellular compartment (nucleus vs. cytoplasm vs. plasma membrane). Co-localization analysis allows for investigation of double-positive, double-negative, and single-positive cell types. Combining multispectral imaging with multiplexed immunohistochemistry and automated image acquisition is an objective, high-throughput method for investigation of biomarkers within tissues.

Introduction

Immunhistokjemi (IHC) er en standard lab teknikk for påvisning av protein i vev, og IHC er fortsatt mye brukt i både forskning og diagnostisk patologi. Evalueringen av IHC-farging er ofte semikvantitativ, innføre mulig skjevhet i tolkning av resultater. Mange semi-kvantitative metoder har blitt utviklet som innlemme både fargeintensitet og farging grad til endelig diagnose 1-4. Andre systemer inkluderer scoring intensitet og subcellulære sted for å bedre lokalisere uttrykket 5. Inkorporering av gjennomsnittlige poeng fra flere seere er ofte benyttet for å minimalisere virkningene av enkelt betrakteren skjevhet 6. Til tross for dette, er fremdeles subjektivitet i analysen, spesielt når man skal vurdere omfanget av flekker 7. Protokoll standardisering og minimere subjektivitet fra menneskelig input er avgjørende for å skape nøyaktige og reproduserbare IHC resultater.

innhold "> Det finnes andre muligheter i tillegg til IHC for bestemmelse av protein ekspresjon i vev. Innenfor forskning innstilling, har immunhistokjemi tradisjonelt blitt sett på som et middel for å undersøke protein lokalisering 8, mens andre teknikker så som immunoblotting blir sett på som gullstandard for å undersøke protein ekspresjon . Bestemme vev eller cellerommet spesifikke uttrykk er vanskelig uten å innlemme avanserte teknikker som cellefraksjonering eller laser capture mikrodisseksjon 9,10. bruken av fluorescerende antistoffer på vev lysbilder tilbyr et rimelig kompromiss, men bakgrunnen autofluorescence grunn av NADPH, lipofuscins, retikulære fiber, kollagen og elastin kan gjøre nøyaktig kvantifisering vanskelig 11.

Automatiserte beregnings patologi plattformer er en lovende retning for mer objektiv kvantifisering av patologi farging 12-15. Kombinere multispektrale bildebehandling med microarraymuliggjør high-throughput analyser av protein uttrykk i store utvalgsstørrelser. Med disse teknikkene, er analyse av protein co-lokalisering, beising heterogenitet, og vev og subcellulær lokalisering mulig samtidig vesentlig reduksjon både iboende skjevheter og tiden som er nødvendig for analyse, mens retur av data i en kontinuerlig snarere enn kategoriske format 16. Derfor er hensikten med denne studien var å demonstrere nytten av og metode for å utføre multipleksede immunhistokjemi med analyse, ved hjelp av multispektrale bildebehandling.

Denne protokollen er skrevet for manuell, multipleks immunhistokjemisk farging av en enkelt vev seksjon lysbilde med fire optimaliserte monoklonale antistoffer. Som et representativt eksperiment, blir kjernefysisk-anti-kanin østrogen reseptor alfa (ERα) og androgenreseptoren (AR) multiplekset med membran-bundet anti-mus CD147 og membran-bundet anti-mus-E-cadherin. Enhver antistoff av valget kan substituted for antistoffer oppført her, men hver kombinasjon av antistoffer krever egen optimalisering. Forbehandling for alle antistoffene må være identiske. De AR og CD147 antistoffer bør optimaliseres individuelt og deretter som en cocktail. Hvert antistoff blir påvist ved å bruke et biotin-fri polymer-system og en av 4 unike kromogener.

Protocol

MERK: Protokollen her beskriver farging og analyse av en vev microarray (TMA), beskrevet tidligere 12,17,18. Den 4 mikrometer tykk TMA delen ble hentet fra en parafinblokken ved hjelp av en standard mikrotom. MERK: En spektral bibliotek for de 4 kromogenene og farge bør opprettes for bilde kvantifisering. For å gjøre dette, bør den optimalisert protokoll for hver enkelt antistoff kjøres med en antistoff per lysbilde, minus den endelige counterstain. En femte lysbildet skal være farget med hematoksylin å generere de…

Representative Results

I figur 1 er trening utført på prostata vev til å segmentere bilder til epitelceller og stromal deler, sammen med ikke-vevet rommet. Ved hjelp av epiteliale membran markør E-cadherin, ble cellesegmenterings utført for å skille kjernen, cytoplasma, og membranpartier, som er vist i figur 2. I ett eksperiment brukte vi multiplekset IHC å undersøke ekspresjon og lokalisering av AR, ERα, E…

Discussion

Bruken av tradisjonelle immunhistokjemi for å evaluere protein ekspresjon er begrenset av subjektive, semi-kvantitative analysemetoder 22,23. Advance plattformer har blitt opprettet for high-throughput analyser av biomarkør uttrykk og lokalisering. Detaljert segmentering av både vev og subcellulære avdelinger tillater brukere å studere biomarkør uttrykk, lokalisering og samlokalisering med andre markører av interesse. I tidligere studier har vi demonstrert nytten av IHC og multispektrale bildebehandlin…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne takker University of Wisconsin translasjonsforskning Initiatives i patologi laboratorium, delvis støttet av UW Avdeling for patologi og laboratoriemedisin og UWCCC bevilgning P30 CA014520, for bruk av sine fasiliteter og tjenester.

Materials

Xylene Fisher Chemical X3F1GAL NFPA rating:Health – 2, Fire – 3 , Reactivity-0
Ethyl Alcohol-200 proof Fisher Scientific 4355223 NFPA rating:Health – 0, Fire – 3 , Reactivity-0
Tris Base Fisher Scientific BP152-500 NFPA rating:Health – 2, Fire – 0 , Reactivity-0
Tris Hydroxymethyl aminomethane HCl Fisher Scientific BP153-1 NFPA rating:Health – 2, Fire – 0 , Reactivity-0
Tween 20 Chem-Impex 1512 NFPA rating:Health – 0, Fire –1 , Reactivity-0
Phosphate-buffered saline Fisher Scientific BP2944-100 NFPA rating:Health – 1, Fire –0 , Reactivity-0
Peroxidazed Biocare Medical PX968 Avoid contact with skin and eyes. May cause skin irritation and eye damage.
Diva Decloaker  Biocare Medical DV2004 This product has been classified as non‐hazardous based on the physical  and/or  chemical nature and/or concentration of ingredients. 
Estrogen Receptor alpha Thermo Fisher Scientific-Labvision RM9101 Not classified as hazardous
Androgen Receptor SCBT sc-816 Not classified as hazardous
CD147 Biodesign P87535M Not classified as hazardous
E-cadherin Dako M3612 Not classified as hazardous
Renoir Red Andibody Diluent Biocare Medical PD904 It is specially designed to work with Tris-based antibodies
DeCloaking Chamber  Biocare Medical Model DC2002 Take normal precautions for using a pressure cooker
Barrier pen-Immuno Edge  Vector Labs H-4000
Denaturing Kit-Elution step Biocare Medical DNS001H Not classified as hazardous
Mach 2 Goat anti-Rabbit HRP Polymer Biocare Medical RHRP520 Not classified as hazardous
Mach 2 Goat anti-Rabbit AP Polymer Biocare Medical RALP525 Not classified as hazardous
Mach 2 Goat anti-Mouse HRP Polymer Biocare Medical M3M530 Not classified as hazardous
Betazoid DAB Chromogen Kit Biocare Medical BDB2004 1. DAB is known to be a suspected carcinogen.
2. Do not expose DAB components to strong light or direct sunlight.
3. Wear appropriate personal protective equipment and clothing.
4. DAB may cause sensitization of skin. Avoid contact with skin and eyes.
5. Observe all federal, state and local environmental regarding disposal
Warp Red Chromogen Kit Biocare Medical WR806 Corrosive. Acid that may cause skin irritation or eye damage. 
Vina Green Chromogen Kit Biocare Medical BRR807 Harmful if swallowed
Bajoran Purple Chromogen Kit Biocare Medical BJP807 Flammable liquid. Keep away from heat, flames and sparks. Harmful by ingestion or absorption. Avoid contact with skin or eyes, and avoid inhalation.
Cat Hematoxylin Biocare Medical CATHE Purple  solution  with  a  mild  acetic  acid  (vinegar)  scent.  May  be
 irritating  to  skin  or  eyes.  Avoid  contact  with  skin  and  eyes.  Avoid  ingestion.
XYL Mounting Media Richard Allen 8312-4 NFPA rating:Health – 2, Fire – 3 , Reactivity-0
1.5 Coverslips Fisher Brand 22266858 Sharp edges
Incubation (Humidity)Chamber obsolete obsolete Multiple vendors available
Convection Oven Stabil- Therm C-4008-Q
Background Punisher Blocking Reagent Biocare Medical BP974 This product is not classified as hazardous. 
inForm software PerkinElmer CLS135781 Primary multispectral imaging software used in manuscript
Nuance software PerkinElmer NUANCEEX Software used for making spectral libraries within manuscript
Vectra microscope and slide scanner PerkinElmer VECTRA Automated slide scanner and microscope for obtaining IM3 image cubes

References

  1. Valdman, A., et al. Expression of redox pathway enzymes in human prostatic tissue. Anal Quant Cytol Histol. 31 (6), 367-374 (2009).
  2. Rimm, D. L., Camp, R. L., Charette, L. A., Olsen, D. A., Provost, E. Amplification of tissue by construction of tissue microarrays. Exp Mol Pathol. 70 (3), 255-264 (2001).
  3. Jonmarker, S., et al. Expression of PDX-1 in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic tissue. APMIS. 116 (6), 491-498 (2008).
  4. McCarty, K. S., Miller, L. S., Cox, E. B., Konrath, J., McCarty, K. S. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 109 (8), 716-721 (1985).
  5. Volante, M., et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 20 (11), 1172-1182 (2007).
  6. Muris, J. J., et al. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood. 105 (7), 2916-2923 (2005).
  7. Jaraj, S. J., et al. Intra- and interobserver reproducibility of interpretation of immunohistochemical stains of prostate cancer. Virchows Arch. 455 (4), 375-381 (2009).
  8. Nakane, P. K., Pierce, G. B. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem. 14 (12), 929-931 (1966).
  9. Peters, T. J. Investigation of tissue organelles by a combination of analytical subcellular fractionation and enzymic microanalysis: a new approach to pathology. J Clin Pathol. 34 (1), 1-12 (1981).
  10. Emmert-Buck, M. R., et al. Laser Capture Microdissection. Science. 274 (5289), 998-1001 (1996).
  11. Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol. 185 (7), 1135-1148 (2009).
  12. Huang, W., Hennrick, K., Drew, S. A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays. Hum Pathol. 44 (1), 29-38 (2013).
  13. Rimm, D. L. C-Path: A Watson-Like Visit to the Pathology Lab. Science Translational Medicine. 3 (108), (2011).
  14. Fiore, C., et al. Utility of multispectral imaging in automated quantitative scoring of immunohistochemistry. J Clin Pathol. 65 (6), 496-502 (2012).
  15. Stack, E. C., Wang, C., Roman, K. A., Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 70 (1), 46-58 (2014).
  16. Rizzardi, A. E., et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 7, 42 (2012).
  17. Bauman, T. M., et al. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules. PLoS One. 9 (10), e109102 (2014).
  18. Bauman, T. M., et al. Beta-catenin is elevated in human benign prostatic hyperplasia specimens compared to histologically normal prostate tissue. Am J Clin Exp Urol. 2 (4), 313-322 (2014).
  19. Bauman, T. M., Ewald, J. A., Huang, W., Ricke, W. A. CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features. BMC Cancer. 15 (1), 549 (2015).
  20. Bauman, T. M., et al. Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues. Prostate. 74 (9), 923-932 (2014).
  21. Nicholson, T. M., Sehgal, P. D., Drew, S. A., Huang, W., Ricke, W. A. Sex steroid receptor expression and localization in benign prostatic hyperplasia varies with tissue compartment. Differentiation. 85 (4-5), 140-149 (2013).
  22. Taylor, C. R., Levenson, R. M. Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment II. Histopathology. 49 (4), 411-424 (2006).
  23. Matos, L. L., Trufelli, D. C., de Matos, M. G., da Silva Pinhal, M. A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights. 5, 9-20 (2010).
  24. Kononen, J., et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 4 (7), 844-847 (1998).
  25. Ong, C. W., et al. Computer-assisted pathological immunohistochemistry scoring is more time-effective than conventional scoring, but provides no analytical advantage. Histopathology. 56 (4), 523-529 (2010).

Play Video

Cite This Article
Bauman, T. M., Ricke, E. A., Drew, S. A., Huang, W., Ricke, W. A. Quantitation of Protein Expression and Co-localization Using Multiplexed Immuno-histochemical Staining and Multispectral Imaging. J. Vis. Exp. (110), e53837, doi:10.3791/53837 (2016).

View Video