Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Behavior

半径方向水迷路迷路を用いた外傷性脳損傷のマウスモデルにおける空間記憶障害の評価

Published: July 17, 2017 doi: 10.3791/55986

Summary

ここでは、泳ぎを必要としないマウス特異的認知試験のプロトコールを紹介します。この試験は、制御された皮質衝撃誘発性外傷性脳損傷マウスを擬似対照から首尾よく区別するために使用することができる。

Abstract

科学研究におけるマウスモデルの使用の最近の増加にもかかわらず、研究者はもともと設計され、ラットの使用のために検証された認知課題を使用し続けている。制御された皮質衝撃誘発TBIマウスと擬似コントロールとの間を首尾よく区別するために、空間的記憶のラジアルウォータートレッド(RWT)迷路試験(マウスのために特別に設計され、泳ぎを必要としない)が以前に示されている。ここでは、このタスクの詳細なプロトコルを示します。 RWT迷路は、マウスの自然な傾向を利用して、開口部を避けて装置の側部をつかむことに好都合である(脈動性)。迷路の壁には、装置の床の上に配置された9つの逃げ穴が並んでおり、迷路から引き出された逃げ穴を見つけるために視覚的手がかりを使用するようにマウスを訓練する。迷路は、エスケープを促すのに十分な1インチの冷水で満たされているが、マウスが泳ぐのに十分な深さではない。取得期間はわずか4回です5日目の記憶保持試験および12日目の長期記憶試験を行った。ここに報告された結果は、RWT迷路が、ラットで検証された水泳ベースの認知試験の実現可能な代替物であることを示唆しているTBIのマウスモデルにおける記憶障害。

Introduction

記憶障害は、外傷性脳損傷(TBI)1、2次の患者で報告された最も一般的な症状の一つです。したがって、TBIの動物モデルにおける類似の記憶障害の正確な同定および評価は、この状態およびその管理についての我々の理解にとって不可欠である。ここでは、Radial Water Tread(RWT)迷路を用いて、TBIのマウスモデルにおける空間的記憶を試験するためのプロトコールを提示する。この装置は、対照皮質インパクト(CCI)誘発TBI 3のマウスモデルにおける認知障害を評価することが以前に示されており、ラットが認定した水泳ベースの認識試験の代替案となる可能性がある。

トランスジェニックマウスモデルの多様性と利用可能性の高まりは、ラットに比べてマウスの使用が最近増加している4 。この変化にもかかわらず、研究者は行動に依存し続ける最初に設計され、ラットの使用のために検証された認知課題である。現在、マウスでの認知を評価するために使用される最も一般的なテストは、モリス水迷路(MWM)とバーンズ円形迷路は、特にラット5、6で見つかった本能的な行動を活用するように設計されました。これら2種の4の間に存在し、遺伝的neuroethological、および認知の違いを考えると、それは驚くべきことではないというのマウスこれらのタスク7、8に一貫アンダーパフォーム。

試験能力における種の差異は、特に水泳に基づくMWMのような認知試験に関連する。ラットとマウスの両方が堪能スイマーですが、研究者たちは水泳ベースの認知タスク9、10に格段にパフォーマンスが低下するいくつかのマウス系統を同定しています11、12、13。でも、野生型動物では、ラットは、一般的に、マウス7、8上回ります。これは、空間的記憶の種特異的な差異として解釈される可能性があるが、乾いた陸地の迷路を用いた類似のフォローアップ試験は、種の依存性の認知能力の差異を明らかにしなかった8 。水泳能力または検索戦略のいずれかの種に依存する差異を含む認知とは無関係の多くの要因がこの発見を説明し得る。実際、MWMにおけるマウス特異的探索戦略の因子分析は、非認知的要因(特に、チゴモザキシおよび受動性( すなわち 、浮動))が空間学習よりもMWM性能においてより重要な役割を果たす可能性があることを示している14

ここで、我々は、認知テストの使用を実証する。CCI誘発性TBIのマウスモデルにおける空間的記憶障害を測定するために、マウスの静的挙動および泳ぎを必要としない、 RWT迷路( 図1 のA-B)は、MWMおよびバーンズ円形迷路の新規なハイブリッドとして考案されたが、それは、具体的には、マウス15、16に本能thigmotactic挙動を活用するように設計されました。この装置は、9つの等間隔の出口孔が穿孔された32インチの亜鉛メッキされたスチール槽からなる。穴は浴槽の床上2〜1/4インチの中心にあり、一般的に利用可能な1-1 / 2インチABS DWV SPG x SJトラップアダプターに適合するようにサイズが決められています。 8つの出口は外側からキャップされ、ゴム栓で1インチの深さに盲検される。 9番目のものは90°のアクリロニトリルブタジエンスチレン(ABS)エルボーで不透明なプラスチックボックスに接続されています。このプラスチックボックスから、試験後マウスを簡単に取り外すことができます。また、マウスは、このエスケープボックスの位置を突き止めるために迷路に並ぶユニークな視覚的手がかりを使用するように訓練されている。試験中、迷路は冷水(12〜14℃)で満たされ、エスケープを促進するのに十分なほど不快であるが、マウスが泳ぐのに十分な深さではない。

RWT迷路は、MWMを低コスト、低メンテナンスの代替を表し、19、18、老齢マウスおよびトランスジェニックマウス15、17で正常に使用され、TBI 3のCCI誘発性マウスモデルされています。ここで概説したプロトコルは、傷害前訓練を必要としない空間記憶障害を測定するための簡単で効果的な方法であり、研究室の特定のニーズに合わせて簡単に修正することができます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべての手順および動物の取り扱いは、国立衛生研究所およびワシントン大学動物保護および使用委員会によって発行された動物ケアガイドラインに従って行われた。

1.手術

  1. 意識がなくなるまで、誘導ボックス内の5%イソフルランでマウスを麻酔する。呼吸速度の低下とトウピンチ後の逃避反射がないことで麻酔を確認する。
  2. 手術中、ノーズコーンを介して2-2.5%の麻酔を維持する。マウスが無意識のままでいることを保証するために、手術中に呼吸速度を監視する。
  3. マウスを暖房パッドの上に置いて、イヤーバーを使用して定位固定装置にマウスを置き、ヘッドがしっかりと平らになっていることを確認します。
  4. 脱毛クリームを使用して頭皮から髪を取り除く。頭皮を生理食塩水で完全にすすぐ。
  5. 交互のヨウ素と70%エタノールで洗浄して外科部位を洗浄する。
  6. 管理者頭皮にリドカインおよびブピバカイン(1mg / kg)を皮下注射した。
  7. 外科用はさみで、縦方向の正中線切開を行い、皮膚を収縮させて頭蓋骨を露出させる。
  8. 5mmのトレフィン鋸を使用して、左前頭前頭皮質上の開頭術を行い、ブレグマの後2.5mmおよび中線の2.5mmの中心点を有する。慎重に脳の輪を取り除いて脳を露出させます。
  9. 衝撃装置を6m / sの速度および200msの滞留時間に設定する。
  10. 3 mmの凸状のインパクト先端が脳の表面にわずかに接触するまでインパクター装置を配置します。ブレグマの2.5 mm後ろと2.55 mmの正中線から手前にします。インパクトチップを後退させ、1mm下げる(インパクトの深さ)。準備が整ったら、デバイスを発射し、必要な衝撃を与えます。
  11. 組織接着剤で真皮に接着した滅菌ポリプロピレンディスクで開頭術を行い、閉鎖した縫合糸を縫合する。
  12. 麻酔からマウスをはずし、BuprのIP注入を行うエノルフィン(0.5mg / kg)。
  13. マウスを清潔なケージで回復させ、加熱パッドで温めます。マウスは、24時間以内に痛みや苦痛の兆候がないか監視する必要があります。
    注:偽のコントロールは、上記のように、1.8-1.9のステップを省略して同じ治療を受けなければならない。

2.ラジアルウォータートレッド迷路の建設

  1. 1-1 / 2インチのABS DWV SPG x SJトラップアダプターを収容するのに十分な大きさの穴9の出口穴が、32インチの亜鉛メッキ鋼管の周囲に等間隔であります。これらの出口穴を浴槽の床の約2〜1/4インチの中心に合わせます。
  2. 各出口穴に1-1 / 2インチABS DWV SPG x SJトラップアダプターを取り付け、付属のリングナットで固定します。
  3. ゴム栓では、9つのうち8つが装置の外部から出ている。最後のキャップのない出口がエスケープルートとして機能します。どの出口がエスケープルートとして指定されているかは関係ありません。
  4. 90°のABSを取り付けるエルボーを残りの出口の外側の端に取り付けます。 90°の湾曲は、試験被験者が迷路の内側から正しい脱出ルートを視覚的に決定するのを防ぐのに役立つ。
  5. 消毒することができ、およそ30cm×15cm×15cmのサイズの不透明箱からエスケープボックスを構築する。 90°ABSエルボーを収容するのに十分な大きさの床の真上にある箱の側面に穴を切ってください。
  6. エスケープボックスを90°ABSエルボの終端に取り付けます。
  7. フロアの表面の上にエスケープボックス(1インチ未満)をわずかに持ち上げます。これにより、電気加熱パッドまたは他の加熱源のための十分な空間をエスケープボックスの下に配置することができます。
  8. 少なくとも5つのユニークで視覚的な手がかりを印刷してラミネートします。装置内から容易に識別できる単純で高コントラストの画像を使用する。黒と白のクリップアートの形(三角、四角、円)をお勧めします。
  9. マグネットを使用して、視覚的手がかりを装置。手がかりは、装置の円周に沿ってほぼ等間隔に離れていなければならない。

3.ラジアルウォータートレッドメイズプロトコル

注:水迷路試験は、手術部位が治癒した後にのみ開始する(手術後約1週間)。

  1. テストの準備。
    1. 試験開始前に少なくとも30分間マウスを試験室に順応させる。
    2. 70%エタノールスプレーを使用して装置を殺菌する。
    3. 約1インチの冷たい(12〜14℃)水で装置を満たす。
    4. エスケープボックスの真下に電気加熱パッドまたはその他の加熱源を置きます。エスケープボックスは、テストの間中暗く暖かい状態に保ちます。
    5. 明るい光源を装置の上に置きます。
      注:装置自体から動物を研究するために見えるかもしれないランプを使用している場合は、ランプが同じ場所に置かれていることを確認してください毎日の会場。ランプ自体は、マウスがエスケープボックスの位置を突き止めるために使用するもう1つの視覚的な手がかりを表し、結果を複雑にする可能性があります。
  2. 試験プロトコル
    1. マウスをそのケージから尾でゆっくりと取り出し、装置の中央に置く。
    2. 動物が装置内に入るとすぐに、タイミングを開始します。
    3. 動物が正しい出口を見つけ、エスケープボックスを見つけた/入力したら、タイミングを停止し、正しい経路を見つけるために必要な秒数を記録します。
    4. 動物が終結孔に登場しようとし、10秒後に自発的に迷路に戻らない場合は、手で迷路の中心に動物を戻してください。
    5. 動物がエスケープボックスへの正しい経路を3分(180秒)以内に見つけられなかった場合は、試行に失敗としてスコアを付け、180秒として記録する。手で正しい経路に向かって動物を慎重に誘導してください。
    6. 許可するマウスをエスケープボックスに入れて1分間、試行錯誤してください。
    7. 1分の休憩が終わったら、エスケープボックスから動物を取り出し、ホームケージに戻します。
    8. エスケープボックスを徹底的に浄化し、70%エタノールスプレーで出て、マウスが正しい逃避経路を見つけるために嗅覚の手がかりを使用しないようにします。この手順は数秒を要しません。
    9. 次の試行のために迷路にマウスを戻します。
    10. マウスが合計3回の試行を完了し、エスケープボックスに3回置かれるか、またはエスケープボックスに3回導かれるまで、ステップ3.2.1-3.2.9を繰り返します。
    11. 最後の1分間の休息の後、マウスをそのホームケージに戻す。
    12. 動物の間で装置内の水を排水して交換し、試験中一貫した温度を確保する。
    13. テストするマウスごとに手順3.2.1-3.2.12を繰り返します。
    14. 翌日、準備ステップ3.2.1-3.2.5を繰り返します。視覚的手掛かりが残っていることを確認する際には特に注意してください試験日の間に一貫した位置に置く。
    15. 上記の毎日の試験プロトコールを用いて動物を1日3回、4日間(訓練期間)、最後の3日間の試験で5日目の記憶保持を試験する。 6回目の3試行テスト(長期記憶保持)は12日目に行うことができます。
    16. テスト日数が5〜12日の間にテストを実行しないでください。
  3. 分析
    1. マウスが180日以内に迷路を完成しなかった場合( すなわち、合計6回の試行がすべて180秒で合計された)、試験条件によってマウスが十分に動機付けられていないと考え、分析から除外する。
    2. その日の毎日3回の試行を平均して、各被験者の迷路を完成させる平均潜時を計算します。
    3. 5日間の試験および長期記憶試験日に標準的なt検定を用いてグループを比較するために、記憶保持におけるグループの差異を得る。 m2つのグループよりも多くのグループが比較されている場合は、得られた有意性をフォローアップするための適切なポストホック分析(Tukey検定など)に続いて一方向ANOVAを使用する必要があります。
    4. 分散の反復測定分析を経由して取得期間(1-4日)で群差を取得します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

RWT迷路( 図1 )を用いて、制御された皮質衝撃誘発TBIまたは偽手術のいずれかを受けるようにランダムに割り当てられたマウスの傷害依存性空間記憶障害を調べた。傷害は、3mmの凸状先端を有するソレノイド駆動の皮質衝撃および6m / sの打撃速度、1mmの浸透深度、および200msの接触時間を用いて生成された。マウスは、手術後35日目から認知試験を受け、上記で概説したように、4日間の訓練(取得期間)、5日目の記憶保持試験および12日目の長期記憶試験を行ったプロトコル。 図2は、TBIマウスと擬似対照との間の迷路を経時的に完了させるための潜在性における明確な群の区別を示す。ここに提示されたデータの分析は、TBIマウスと比較して、偽対照において潜伏時間が有意に減少したことを明らかにした 5日目と12日目の両方で測定した( 図2 )。どの被験体も、試験条件によって十分に動機付けられていないとみなされる基準を満たさなかったので、分析からマウスを除去しなかった。

図1
図1:ラジアルウォータートレッドの迷路。
迷路は、9インチの出口を備えた32インチの亜鉛メッキされたスチールタブで構成されています。これらの出口のうち、およそ1インチ(デコイ出口)後に8個が終了し、エスケープルートが視覚的に確認されないように90°の角度の湾曲の後ろに隠された加熱エスケープボックス(30 cm x 15 cm x 15 cm)エスケープボックスに達すると、被験者は1分間の試行錯誤を受けた。この装置には、1インチの冷水(12〜14℃)が充填され、エスケープ動作を促し、空間的な方向付けのための5つのユニークな視覚的手がかりが並んでいる。/ecsource.jove.com/files/ftp_upload/55986/55986fig1large.jpg "target =" _ blank ">この図の拡大版を表示するには、ここをクリックしてください。

図2
図2:ラジアルウォータートレッドの迷路の代表的な結果
10週齢のC57BL / 6Jマウスは、対照対照(n = 11)または偽(n = 6)のいずれかの手術を受けた。傷害パラメータは、3mm凸型衝撃先端、6m / s速度、1mm浸透深度および200ms滞留時間であった。マウスは損傷後35日目のRWT迷路試験を受け始めた。試験プロトコールは、1日当たり3回の試験(取得期間)、5日目の記憶保持の3試行試験、12日目の3試行の長期記憶試験から成った。反復測定の分散分析は、獲得期間中の群の差異(1〜4日目)(F [1,15] = 1.844、p> 0.05)。迷路を完了するための潜時は、5日目(t [15] = 1.907、p <0.05)および12日目(t [15] = 2.242、p <0.05)の両方において、偽対照と比較してTBIマウスにおいて有意に上昇した。データ点は群平均(±SEM)を表す。有意性は、標準的なt検定(群間差の先験的仮説に基づく片側検定)によって決定され、p <0.05(*)として報告されている この図の拡大版を見るには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ここに示されたRWT迷路プロトコルは、CCI誘発TBIマウスと擬似対照を首尾よく区別し、MWMおよびBarnes環状迷路の代わりに実行可能なマウス中心の代用品である。ここで報告された結果は、TBIマウスモデルにおいてRWT迷路の使用にのみ話すながら、この装置は、MWM非現実的15、17使用して製造されたスイム基づく試験から得られた違反を応力によって誘導される老齢トランスジェニックモデルに首尾よく使用されています、18、19。不適合または運動障害が潜在的な研究上の問題である他のマウスモデルも、この認知課題から利益を得ることができる。

前述の設計上の利点に加えて、RWT迷路のメリットの1つは、構成と使用の両面でそのシンプルさです。装置自体は、rel低コストの材料であり、その成分を損なうことなく衛生的に処理することができ、特定病原体不使用(SPF)施設に理想的です。取得期間は、傷害前訓練を必要とせずに、わずか4日間のテストが必要です。日常的なテストでは最小限の時間(約10分/動物)を要し、熟練の前に経験がほとんど必要ありません。建設と使用が簡単であるため、RWT迷路は、比較的タイトな予算に制約され、行動や認知テストの経験がほとんどまたはまったくない実験室にとって理想的です。

ここで概説したプロトコルを使用する場合、潜在的な変動を減らすために研究者が取ることができるいくつかのステップがあります。一貫性のある品質の結果を得るためのいくつかの推奨事項には、コホート間の同時刻のテスト、可能であれば同じ人物を使用したテスト、静かで静かなテスト環境の維持、テスト前のマウスの大量処理などがあります。それはまたemphaでなければならないこのプロトコールに記載されている水温がオスのC57BL / 6Jマウスの試験条件を成功させる一方、温度の好みおよび低体温はひどく緊張し、性別に依存している20 。低体温を誘発しない有効温度範囲を決定するために、他の系統または雌マウスを使用する場合、研究室は予備試験を実施する必要があります。最後に、視覚的手がかりは、テスト中に被験者に見えるように、簡単で、容易に区別できるものでなければならない。基本的な黒と白の形(ラミネート、またはプラスチックで覆われているので、それらを衛生的にすることができる)が好ましい。

ここに記述されているテストプロトコルは比較的簡単ですが、研究者に待ち時間を超えて過度の情報を逃すために容易に適合させることができます。動物追跡ソフトウェアを使用して、追加のパラメータを豊富に収集することができ、検索行動におけるグループ特有の差異を識別することができる。そのようなソフトウェアは本質的ではありませんただし、ここに示すように、テストには必要です。さらに、エスケープボックスへの出口がブロックされているか、または視覚的手がかりが回転して終結孔での出口を示すプローブ試行を、ここで概説したプロトコルを補うために使用することができる。ここで提示された代表的な結果を得るためには4日間の取得期間がすべて必要でしたが、他のTBIパラメータ/モデルや遺伝的な系統をテストする研究者は、独自のパイロットテストを実施し、必要に応じてトレーニング期間を短縮、 。

このテストプロトコルには、言及に値する制限があります。第1に、冷水を交換し、被験者の間で装置を衛生的にすることは、時間がかかり、物理的に要求されることがある。研究者の労力と時間を最小限に抑えるには、排水を容易にするフロアドレンがある部屋で試験を行い、ホース付きの冷水シンクに簡単にアクセスできるようにする必要があります。第二に、ビデオ録画をしない手のタイミングは、人為的ミスのリスクをもたらす。しかし、一部のラボではトラッキングソフトウェアが非常に高価になる可能性があるため、手動タイミングを使用する必要がある場合、このようなリスクは避けられません。さらに、MWMの場合と同様に、空間メモリはRWT迷路を使用して同じ被験者で再テストすることはできません( つまり 、迷路が学習されると、それ以降の空間メモリテストを行うことはできません)。また、偽手術と比較して迷路を行うTBIマウスの能力を変える可能性のあるTBI関連運動障害の影響があるかもしれない。しかし、それを念頭に置いて、動きを必要とするすべてのげっ歯類の空間的記憶検査に同様の制限があることがあり得る。モーショントラッキングソフトウェアをRTMと共に使用して、全経路長および速度を評価し、そのような差異を定量化することができます。最後に、研究者は、ここに記載されているRWT迷路はTBIのマウスモデルにおける認知試験に利用可能な唯一の非水泳試験ではないことに注意する必要があります。その他y-迷路のようなestは、TBIマウス21と偽物を首尾よく区別するために使用されている21 。研究室で使用するかどうかを決定する前に、各試験の長所と短所を検討する必要があります。

ここに記載されているRWT迷路プロトコルは、マウスモデル研究で現在使用されているラットで検証された認知試験の代替案であり、水泳を必要としません。科学的研究におけるマウスモデルの使用が増加し続けるにつれて、マウスで検証された研究ツールの最終的な採用は、より正確な研究結果をもたらす可能性がある。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は何も開示することはない。

Acknowledgments

この研究は、Translational Health Sciencesパイロットプロジェクトグラント機会(UL1TR000423)、ワシントン大学センター、ヒューマンデベロップメントおよび障害、およびワシントン大学動物行動コアおよび脳イメージングコアで支援されました。ここで紹介したオリジナルのラジアルウォータートレッドの迷路設計とプロトコールの開発と普及における彼の役割についてウォーレンラディゲス博士に感謝したい。このプロジェクトに協力してくれたToby Coleにも感謝します。

Materials

Name Company Catalog Number Comments
35 Gal. Hot Dipped Steel Round Tub Home Depot Internet #206638142 Needed: 1
1-1/2 in. ABS DWV SPG x SJ Trap Adapter Home Depot Internet #100344703, Store SKU #188956 Needed: 9
1-3/4 in. x 1-7/16 in. Black Rubber Stopper Home Depot Internet #100114974 Store SKU #755844 Needed: 8
1-1/2 in. ABS DWV 90 Degree Hub x Hub Elbow Home Depot Internet #100346663 Store SKU #188603 Needed: 1
HDX
10 Gal. Storage Tote
Home Depot Internet #202523587 Store SKU #258804 Store SO SKU #258804 Needed: 1
Impact One Stereotaxic Impactor for CCI Leica Biosystems 39463920 Needed: 1
Vernier Stereotaxic w/ Manual Fine Drive Stereotaxic Instrument for Small Animals Leica Biosystems 39463001 Needed: 1

DOWNLOAD MATERIALS LIST

References

  1. Levin, H. Neurobehavioral outcome of closed head injury: Implications for clinical trials. J. Neurotrauma. 12 (4), 601-610 (1995).
  2. Schretlen, D., Shapiro, A. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 15 (4), 341-349 (2003).
  3. Cline, M. M., et al. Novel application of a radial water tread maze can distinguish cognitive deficits in mice with traumatic brain injury. Brain Res. 1657, 140-147 (2017).
  4. Ellenbroek, B., Youn, J. Rodent models in neuroscience research: Is it a rat race? Dis. Model. Mech. 9 (10), 1079-1087 (2016).
  5. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci Methods. 11 (1), 47-60 (1984).
  6. Barnes, C. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psych. 93 (1), 74-104 (1979).
  7. Frick, K., Stillner, E., Berger-Sweeney, J. Mice are not little rats: Species differences in a one-day water maze task. Neuroreport. 11 (16), 3461-3465 (2000).
  8. Whishaw, I., Tomie, J. Of Mice and Mazes: Similarities Between Mice and Rats on Dry Land But Not Water Mazes. Physiol Behav. 60 (5), 1191-1197 (1995).
  9. Francis, D., Zaharia, M., Shanks, N., Anisman, H. Stress-induced disturbances in Morris water-maze performance: Interstrain variability. Physiol Behav. 58 (1), 57-65 (1995).
  10. Wahlsten, D., Rustay, N., Metten, P., Crabbe, J. In search of a better mouse test. Trends Neurosci. 26 (3), 132-136 (2003).
  11. Crawley,, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. (Berl). 132 (2), 107-124 (1997).
  12. Wahlsten, D., et al. Different data from different labs: lessons from studies of gene-environment interaction. J. Neurobiol. 54 (1), 283-311 (2002).
  13. Rogers, D. C., et al. Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res. 105 (2), 207-217 (1999).
  14. Wolfer, D. P., Stagljar-Bozicevic, M., Errington, M. L., Lipp, H. Spatial Memory and Learning in Transgenic Mice: Fact or Artifact? Physiology. 13 (3), 118-123 (1998).
  15. Koopmans, G., Blokland, A., Vannieuwenhuijzen, P., Prickaerts, J. Assessment of spatial learning abilities of mice in a new circular maze. Physiol Behav. 79 (4-5), 683-693 (2003).
  16. Deacon, R., Rawlins, N. Learning impairments of hippocampal-lesioned mice in a paddling pool. Behav Neurosci. 116 (3), 472-478 (2002).
  17. Pettan-Brewer, C., et al. A novel radial water tread maze tracks age-related cognitive decline in mice. Pathobiol Aging Age Relat Dis. 3, 1-4 (2013).
  18. Wiley, J., Pettan-Brewer, C., Ladiges, W. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice. Aging Cell. 10 (3), 418-428 (2011).
  19. Enns, L., et al. Disruption of Protein Kinase A in Mice Enhances Healthy Aging. PLoS ONE. 4 (6), (2009).
  20. Ivonen, H., Nurminen, L., Harri, M., Tanila, H., Puolivali, J. Hypothermia in mice tested in Morris water maze. Behav Brain Res. 141 (2), 207-213 (2003).
  21. Shultz, S. R., et al. Granulocyte-macrophage colony-stimulating factor is neuroprotective in experimental traumatic brain injury. J Neurotrauma. 31 (10), 976-983 (2014).

Tags

行動、問題125、外傷性脳損傷、認知試験、行動試験、水迷路、制御皮質衝撃、神経科学、マウスモデル、マウス
半径方向水迷路迷路を用いた外傷性脳損傷のマウスモデルにおける空間記憶障害の評価
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Cline, M. M., Ostlie, M. A., Cross,More

Cline, M. M., Ostlie, M. A., Cross, C. G., Garwin, G. G., Minoshima, S., Cross, D. J. Assessing Spatial Memory Impairment in a Mouse Model of Traumatic Brain Injury Using a Radial Water Tread Maze. J. Vis. Exp. (125), e55986, doi:10.3791/55986 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter