Summary

Litografia de feixe de íons focada para etch nano-arquiteturas em microeletrodos

Published: January 19, 2020
doi:

Summary

Mostramos que a gravura da nanoarquitetura em dispositivos de microeletrodo intracortical pode reduzir a resposta inflamatória e tem o potencial de melhorar as gravações eletrofisiológicas. Os métodos descritos aqui descrevem uma abordagem para gravar nano-arquiteturas na superfície de microeletrodos intracortical de silício de haste única não funcionais e funcionais.

Abstract

Com os avanços na eletrônica e na tecnologia de fabricação, os microeletrodos intracortical passaram por melhorias substanciais que permitem a produção de microeletrodos sofisticados com maior resolução e capacidades ampliadas. O progresso na tecnologia de fabricação tem apoiado o desenvolvimento de eletrodos biomiméticos, que visam integrar-se perfeitamente no parenchyma cerebral, reduzir a resposta neuroinflamatória observada após a inserção de eletrodos e melhorar a qualidade e longevidade das gravações eletrofisiológicas. Aqui descrevemos um protocolo para empregar uma abordagem biomimética recentemente classificada como nanoarquitetura. O uso de litografia de feixe de íons focados (FIB) foi utilizado neste protocolo para gravar características específicas da nanoarquitetura na superfície de microeletrodos intracortical de pernil único não funcionais e funcionais. A gravura nanoarquiteturas na superfície do eletrodo indicou possíveis melhorias da biocompatibilidade e funcionalidade do dispositivo implantado. Um dos benefícios do uso do FIB é a capacidade de gravar em dispositivos manufaturados, ao contrário durante a fabricação do dispositivo, facilitando possibilidades ilimitadas de modificar inúmeros dispositivos médicos pós-fabricação. O protocolo aqui apresentado pode ser otimizado para vários tipos de materiais, recursos de nanoarquitetura e tipos de dispositivos. Aumentar a superfície dos dispositivos médicos implantados pode melhorar o desempenho do dispositivo e a integração no tecido.

Introduction

Microeletrodos Intracortical (IME) são eletrodos invasivos que fornecem um meio de interligar diretamente entre dispositivos externos e as populações neuronais dentro do córtex cerebral1,2. Esta tecnologia é uma ferramenta inestimável para o registro de potenciais de ação neural para melhorar a capacidade dos cientistas de explorar a função neuronal, avançar a compreensão de doenças neurológicas e desenvolver terapias potenciais. O microeletrodo Intracortical, usado como parte dos sistemas brain machine interface (IMC), permite o registro de potenciais de ação de um indivíduo ou pequenos grupos de neurônios para detectar intenções motoras que podem ser usadas para produzir saídas funcionais3. Na verdade, os sistemas de IMC têm sido usados com sucesso para fins protéticos e terapêuticos, como o controle do ritmo sensório-motor adquirido para operar um cursor de computador em pacientes com esclerose lateral amiotrófica (ELA)4 e lesões na medula espinhal5 e restaurar o movimento em pessoas que sofrem de telegia crônica6.

Infelizmente, imes muitas vezes não conseguem gravar de forma consistente ao longo do tempo devido a vários modos de falha que incluem mecânicos, biológicos e materiais fatores7,8. Acredita-se que a resposta neuroinflamatória que ocorre após a implantação do eletrodo seja um desafio considerável que contribui para a falha do eletrodo9,10,11,12,13, 14. A resposta neuroinflamatória é iniciada durante a inserção inicial do IME que corta a barreira cerebral do sangue, danifica o parenchyma cerebral local e interrompe as redes gliais e neuronais15,16. Esta resposta aguda é caracterizada pela ativação de células gliais (microglia/macrófagos e astrócitos), que liberam moléculas pró-inflamatórias e neurotóxicas ao redor do local do implante17,18,19,20. A ativação crônica das células gliais resulta em uma reação corporal estrangeira caracterizada pela formaçãode uma cicatriz glial isolando o eletrodo do tecido cerebral saudável7,9,12,13, 17,21,22. Em última análise, dificultando a capacidade do eletrodo para registrar potenciais de ação neuronal, devido à barreira física entre o eletrodo e os neurônios e a degeneração e morte dos neurônios23,24,25.

O fracasso precoce dos microeletrodos intracortical trouxe pesquisas consideráveis no desenvolvimento de eletrodos de próxima geração, com ênfase em estratégias biomiméticas26,27,28,29,30. De particular interesse para o protocolo descrito aqui, é o uso da nano-arquitetura como uma classe de alterações de superfície biomimética para IMEs31. Estabeleceu-se que as superfícies que imitam a arquitetura do ambiente in vivo natural têm uma resposta biocompatível melhorada32,33,34,35,36. Assim, a hipótese que obrigando este protocolo é que a descontinuidade entre a arquitetura áspera do tecido cerebral e a arquitetura suave dos microeletrodos intracortical pode contribuir para a resposta neuroinflamatória e crônica do corpo estranho às IMEs implantadas (para uma revisão completa refere-se a Kim et al.31). Já mostramos anteriormente que a utilização de características nanoarquitetura semelhantes à arquitetura de matriz extracelular do cérebro reduz marcadores inflamatórios astrócitos de células cultivadas em substratos nano-arquiteturados, em comparação com superfícies de controle plano em modelos in vitro e ex vivo de neuroinflamação37,38. Além disso, mostramos que a aplicação da litografia de feixe de íons focados (FIB) para gravar nanoarquiteturas diretamente em sondas de silício resultou em um aumento significativo da viabilidade neuronal e menor expressão de genes pró-inflamatórios de animais implantados com as sondas de nanoarquitetura em comparação com o grupo de controle suave26. Portanto, o objetivo do protocolo apresentado aqui é descrever o uso da litografia fib para gravar nanoarquiteturas em dispositivos de microeletrodo intracortical fabricados. Este protocolo foi projetado para gravar características do tamanho de nanoarquitetura em superfícies de silício de hastes de microeletrodos intracortical utilizando processos automatizados e manuais. Estes métodos são descomplicados, reproduzíveis e certamente podem ser otimizados para vários materiais de dispositivos e tamanhos de recurso desejados.

Protocol

NOTA: Faça as seguintes etapas ao desgastar o equipamento protetor pessoal apropriado, tal como um revestimento de laboratório e luvas. 1. Montagem de sonda de silício não funcional para litografia de feixe de íons focados (FIB) NOTA: Para o procedimento completo que descreve a fabricação da bolacha soi com as 1.000 sondas, consulte a Ereifej et al.39. Isolar uma tira de 2-3 sondas de silício do silício em isolante (SOI) wa…

Representative Results

FIB gravado Nano-arquitetura nas superfícies de sondas intracortical único shankUtilizando os métodos descritos aqui, sondas intracortical foram gravadas com nano-arquiteturas específicas seguindo protocolos estabelecidos39. Dimensões e forma do projeto nano-arquitetura descrito nestes métodos foram implementados a partir de resultados in vitro anteriores, retratando uma diminuição na reatividade das células gliais, quando cultivada com o projeto de nano-arquitetura d…

Discussion

O protocolo de fabricação delineado aqui utiliza litografia de feixe de íons focados para efetivamente e reprodutivelmente gravar nano-arquiteturas na superfície de microeletrodos de silício de pernil único não funcionais e funcionais. A litografia focada em feixe de íons (FIB) permite a ablação seletiva da superfície do substrato usando um feixe de íons finamente focado50,51. FIB é uma técnica de escrita direta que pode produzir várias caracterís…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este estudo foi apoiado pelos prêmios do Departamento de Pesquisa e Desenvolvimento de Reabilitação de Assuntos de Veteranos dos Estados Unidos (EUA): #RX001664-01A1 (CDA-1, Ereifej) e #RX002628-01A1 (CDA-2, Ereifej). O conteúdo não representa as opiniões do Departamento de Assuntos de Veteranos dos EUA ou do Governo dos Estados Unidos. Os autores gostariam de agradecer à FEI Co. (Agora parte da Thermofisher Scientific) pela assistência e uso da instrumentação por pessoal, o que ajudou no desenvolvimento dos roteiros utilizados nesta pesquisa.

Materials

16-Channel ZIF-Clip Headstage Tucker Davis Technologies ZC16 The headstage and headstage holder may need to be changed, depending on the electrode used. https://www.tdt.com/zif-clip-digital-headstages.html
1-meter cable, ALL spring wrapped Thomas Scientific 1213F04 Any non treated petri dish will suffice. https://www.thomassci.com/Laboratory-Supplies/Cell-Culture-Dishes/_/Non-Treated-Petri-Dishes?q=petri%20dish%20cell%20culture
32-Channel ZIF-Clip Headstage Holder Tucker Davis Technologies Z-ROD32 The headstage and headstage holder may need to be changed, depending on the electrode used. https://www.tdt.com/zif-clip-digital-headstages.html
Acetone, Thinner/Extender/Cleaner, 30ml Ted Pella 16023 https://www.tedpella.com/SEMmisc_html/SEMpaint.htm#anchor16062
Baby-Mixter Hemostat Fine Science Tools 13013-14 Any curved hemostat will suffice. https://www.finescience.com/en-US/Products/Forceps-Hemostats/Hemostats/Baby-Mixter-Hemostat
Carbon Conductive Tape, Double Coated Ted Pella 16084-7 The protocol suggested three options for mounting the functional electrode to the aluminum stub (copper or carbon conductive tape or a low profile clip. We utilized the carbon conductive tape in our study. https://www.tedpella.com/semmisc_html/semadhes.htm
Corning Costar Not Treated Multiple Well Plates – 6 well Sigma Aldrich CLS3736-100EA Any non-treated 6 well plate will suffice. https://www.sigmaaldrich.com/catalog/substance/
Dumont #5 Fine Forceps Fine Science Tools 11251-30 Either this fine forceps or the vacuum pump will suffice. https://www.finescience.com/en-US/Products/Forceps-Hemostats/Dumont-Forceps/Dumont-5-Forceps/11251-30
Ethanol, 190 proof (95%), USP, Decon Labs Fisher Scientific 22-032-600 Any 95% ethanol will suffice. https://www.fishersci.com/shop/products/ethanol-190-proof-95-usp-decon-labs-10/22032600
Falcon Cell Strainer Fisher Scientific 08-771-1 https://www.fishersci.com/shop/products/falcon-cell-strainers-4/087711
FEI, Tescan, Zeiss (also for Philips, Leo, Cambridge, Leica, CamScan), aluminum, grooved edge, Ø32mm Ted Pella 16148 Depending on the SEM machine used, you may need a different size stub. https://www.tedpella.com/SEM_html/SEMpinmount.htm#_16180
Fisherbrand Aluminum Foil, Standard-gauge roll Fisher Scientific 01-213-101 Any aluminum foil will suffice. https://www.fishersci.com/shop/products/fisherbrand-aluminum-foil-7/p-306250
Fisherbrand Low- and Tall-Form PTFE Evaporating Dishes Fisher Scientific 02-617-149 Any Teflon plate will suffice, this is used to dry the probes after washing on a surface they will not stick onto. https://www.fishersci.com/shop/products/fisherbrand-low-tall-form-ptfe-evaporating-dishes-12/p-88552
Michigan-style silicon functional electrode NeuroNexus A1x16-3mm-100-177 http://neuronexus.com/electrode-array/a1x16-3mm-100-177/
Model 1772 Universal holder KOPF Model 1772 Other stereotaxic frames and accessories will suffice. http://kopfinstruments.com/product/model-1772-universal-holder/
Model 900-U Small Animal Stereotaxic Instrument KOPF Model 900-U Other stereotaxic frames and accessories will suffice. http://kopfinstruments.com/product/model-900-small-animal-stereotaxic-instrument1/
Model 960 Electrode Manipulator with AP Slide Assembly KOPF Model 960 Other stereotaxic frames and accessories will suffice. http://kopfinstruments.com/product/model-1772-universal-holder/
Parafilm M 10cm x 76.2m (4" x 250') Ted Pella 807-5 https://www.tedpella.com/grids_html/807-2.htm
PELCO Vacuum Pick-Up System, 220V Ted Pella 520-1-220 Either this vacuum pump or the fine forceps will suffice. http://www.tedpella.com/grids_html/Vacuum-Pick-Up-Systems.htm#anchor-520
PELCO Conductive Silver Paint Ted Pella 16062 https://www.tedpella.com/SEMmisc_html/SEMpaint.htm#anchor16062
SEM FIB FEI Helios 650 Nanolab Thermo Fisher Scientific Helios G2 650 This is the specific focused ion beam and scanning electron microscope used in the protocol. The Nanobuilder software is what it comes with. If a different FIB instrument is used, it may not be completely compatible with the protocol, specifically the steps requiring the Nanobuilder software. https://www.fei.com/products/dualbeam/helios-nanolab/

References

  1. Salcman, M., Bak, M. J. A new chronic recording intracortical microelectrode. Medical and Biological Engineering. 14 (1), 42-50 (1976).
  2. Im, C., Seo, J. -. M. A review of electrodes for the electrical brain signal recording. Biomedical Engineering Letters. 6 (3), 104-112 (2016).
  3. Donoghue, J. Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron. 60 (3), 511-521 (2008).
  4. Gilja, V., et al. Clinical translation of a high-performance neural prosthesis. Nature medicine. 21 (10), 1142-1145 (2015).
  5. Wolpaw, J. R., McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences. 101 (51), 17849-17854 (2004).
  6. Ajiboye, A. B., et al. Restoration of reaching and grasping in a person with tetraplegia through brain-controlled muscle stimulation: a proof-of-concept demonstration. Lancet. 389 (10081), 1821-1830 (2017).
  7. Polikov, V. S., Tresco, P. A., Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods. 148 (1), 1-18 (2005).
  8. Barrese, J. C., et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering. 10 (6), 066014 (2013).
  9. McConnell, G. C., et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. Journal of Neural Engineering. 6 (5), 056003 (2009).
  10. Potter, K. A., Buck, A. C., Self, W. K., Capadona, J. R. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. Journal of Neural Engineering. 9 (4), 046020 (2012).
  11. Biran, R., Martin, D. C., Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental Neurology. 195 (1), 115-126 (2005).
  12. Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neurosciences. 6 (1), 48-67 (2015).
  13. Jorfi, M., Skousen, J. L., Weder, C., Capadona, J. R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of Neural Engineering. 12 (1), 011001 (2015).
  14. Michelson, N. J., et al. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface. Journal of Neural Engineering. 15 (3), 033001 (2018).
  15. Saxena, T., et al. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials. 34 (20), 4703-4713 (2013).
  16. Potter, K. A., et al. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. 34, 7001-7015 (2013).
  17. Ravikumar, M., et al. The Roles of Blood-derived Macrophages and Resident Microglia in the Neuroinflammatory Response to Implanted Intracortical Microelectrodes. Biomaterials. 0142 (35), 8049-8064 (2014).
  18. Hermann, J., Capadona, J. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Critical Reviews in Biomedical Engineering. 46 (4), 341-367 (2018).
  19. Ereifej, E. S., et al. Implantation of Intracortical Microelectrodes Elicits Oxidative Stress. Frontiers in Bioengineering and Biotechnology. , (2018).
  20. Block, M. L., Zecca, L., Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience. 8 (1), 57-69 (2007).
  21. Nguyen, J. K., et al. Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants. Acta Biomaterialia. 29, 81-93 (2016).
  22. Salatino, J. W., Ludwig, K. A., Kozai, T. D., Purcell, E. K. Glial responses to implanted electrodes in the brain. Nature Biomedical Engineering. 1 (11), 862 (2017).
  23. Block, M. L., Zecca, L., Hong, J. -. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience. 8 (1), 57-69 (2007).
  24. Biran, R., Martin, D., Tresco, P. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental Neurology. 195 (1), 115-126 (2005).
  25. Liu, X., et al. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Transactions on Rehabilitation Engineering. 7 (3), 315-326 (1999).
  26. Ereifej, E. S., et al. The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials. , (2017).
  27. Nguyen, J. K., et al. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of Neural Engineering. 11 (5), 056014 (2014).
  28. Wei, X., et al. Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording. Advanced Science. , 1700625 (2018).
  29. Patel, P. R., et al. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. Journal of Neural Engineering. 13 (6), 066002 (2016).
  30. Chen, R., Canales, A., Anikeeva, P. Neural recording and modulation technologies. Nature Reviews Materials. 2 (2), 16093 (2017).
  31. Kim, Y., et al. Nano-Architectural Approaches for Improved Intracortical Interface Technologies. Frontiers in Neuroscience. 12, (2018).
  32. Millet, L. J., Bora, A., Sweedler, J. V., Gillette, M. U. Direct cellular peptidomics of supraoptic magnocellular and hippocampal neurons in low-density co-cultures. ACS Chemical Neurosciences. 1 (1), 36-48 (2010).
  33. Ding, H., Millet, L. J., Gillette, M. U., Popescu, G. Actin-driven cell dynamics probed by Fourier transform light scattering. Biomedical Optical Express. 1 (1), 260-267 (2010).
  34. Kotov, N. A., et al. Nanomaterials for Neural Interfaces. Advanced Materials. 21 (40), 3970-4004 (2009).
  35. Curtis, A. S., et al. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobioscience. 3 (1), 61-65 (2004).
  36. Zervantonakis, I. K., Kothapalli, C. R., Chung, S., Sudo, R., Kamm, R. D. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics. 5 (1), 13406 (2011).
  37. Ereifej, E. S., et al. Nanopatterning effects on astrocyte reactivity. Journal of Biomedical Materials Research Part A. 101 (6), 1743-1757 (2013).
  38. Ereifej, E. S., Cheng, M. M. -. C., Mao, G., VandeVord, P. J. Examining the inflammatory response to nanopatterned polydimethylsiloxane using organotypic brain slice methods. Journal of Neuroscience Methods. 217 (1-2), 17-25 (2013).
  39. Ereifej, E. S., et al. The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials. 28 (12), 1704420 (2018).
  40. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neuroscience. 7 (5), 446-451 (2004).
  41. Mullen, R. J., Buck, C. R., Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 116 (1), 201-211 (1992).
  42. Rennaker, R. L., Miller, J., Tang, H., Wilson, D. A. Minocycline increases quality and longevity of chronic neural recordings. Journal of Neural Engineering. 4 (2), 1-5 (2007).
  43. Sladek, Z., Rysanek, D. Expression of macrophage CD14 receptor in the course of experimental inflammatory responses induced by lipopolysaccharide and muramyl dipeptide. Veterinarni Medicina. 53 (7), 347-357 (2008).
  44. Janova, H., et al. CD14 is a key organizer of microglial responses to CNS infection and injury. Glia. , (2015).
  45. Ziegler-Heitbrock, H. W. L., Ulevitch, R. J. CD14: Cell surface receptor and differentiation marker. Immunology Today. 14 (3), 121-125 (1993).
  46. Lowenstein, C. J., Padalko, E. iNOS (NOS2) at a glance. Journal of Cell Science. 117 (14), 2865-2867 (2004).
  47. Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sciences. 75 (6), 639-653 (2004).
  48. Kozai, T. D., et al. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. Journal of Neurosciences Methods. 242, 15-40 (2015).
  49. Kozai, T. D., et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials. 37, 25-39 (2015).
  50. Raffa, V., Vittorio, O., Pensabene, V., Menciassi, A., Dario, P. FIB-nanostructured surfaces and investigation of bio/nonbio interactions at the nanoscale. IEEE Transactions on Nanobioscience. 7 (1), 1-10 (2008).
  51. Lehrer, C., Frey, L., Petersen, S., Ryssel, H. Limitations of focused ion beam nanomachining. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 19 (6), 2533-2538 (2001).
  52. Watkins, R., Rockett, P., Thoms, S., Clampitt, R., Syms, R. Focused ion beam milling. Vacuum. 36 (11-12), 961-967 (1986).
  53. Veerman, J., Otter, A., Kuipers, L., Van Hulst, N. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Applied Physics Letters. 72 (24), 3115-3117 (1998).
  54. Lanyon, Y. H., Arrigan, D. W. Recessed nanoband electrodes fabricated by focused ion beam milling. Sensors and Actuators B: Chemical. 121 (1), 341-347 (2007).
  55. Menard, L. D., Ramsey, J. M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Letters. 11 (2), 512-517 (2010).
  56. Ziberi, B., Cornejo, M., Frost, F., Rauschenbach, B. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. Journal of Physics: Condensed Matter. 21 (22), 224003 (2009).
  57. Reyntjens, S., Puers, R. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering. 11 (4), 287 (2001).
  58. Heyderman, L., David, C., Kläui, M., Vaz, C., Bland, J. Nanoscale ferromagnetic rings fabricated by electron-beam lithography. Journal of Applied Physics. 93 (12), 10011-10013 (2003).
  59. Baquedano, E., Martinez, R. V., Llorens, J. M., Postigo, P. A. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces. Nanomaterials. 7 (5), 109 (2017).
  60. Eom, H., et al. Nanotextured polymer substrate for flexible and mechanically robust metal electrodes by nanoimprint lithography. ACS Applied Materials & Interfaces. 7 (45), 25171-25179 (2015).
  61. Li, K., Morton, K., Veres, T., Cui, B. 5.11 Nanoimprint Lithography and Its Application in Tissue Engineering and Biosensing. Comprehensive Biotechnology. , 125-139 (2011).
  62. Dong, B., Zhong, D., Chi, L., Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Advanced Materials. 17 (22), 2736-2741 (2005).
  63. Dalby, M. J., Gadegaard, N., Wilkinson, C. D. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. Journal of Biomedical Materials Research Part A. 84 (4), 973-979 (2008).
  64. Tseng, A. A., Chen, K., Chen, C. D., Ma, K. J. Electron beam lithography in nanoscale fabrication: recent development. IEEE Transactions on Electronics Packaging Manufacturing. 26 (2), 141-149 (2003).
  65. Yang, Y., Leong, K. W. Nanoscale surfacing for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2 (5), 478-495 (2010).
  66. Vermeij, T., Plancher, E., Tasan, C. Preventing damage and redeposition during focused ion beam milling: The “umbrella” method. Ultramicroscopy. 186, 35-41 (2018).

Play Video

Cite This Article
Mahajan, S., Sharkins, J. A., Hunter, A. H., Avishai, A., Ereifej, E. S. Focused Ion Beam Lithography to Etch Nano-architectures into Microelectrodes. J. Vis. Exp. (155), e60004, doi:10.3791/60004 (2020).

View Video