Summary

测定细菌和化学物质对开牛结不二病的肠道渗透性的影响

Published: December 03, 2019
doi:

Summary

该协议描述了如何测量卡内沙布迪炎的肠道渗透性。该方法有助于对肠道健康进行与肠道细菌与其宿主相互作用相关的基础生物学研究,并有助于筛选出益生菌和化学制剂,以治疗漏肠综合征和炎症性肠病。

Abstract

在活生物体中,肠道高渗透性是导致许多炎症性肠病 (IBDs) 的严重症状。Caenorhabditis elegans是一种非哺乳动物动物模型,由于其寿命短、透明度高、成本效益高和缺乏动物伦理问题而被广泛用作测定系统。本研究开发了一种方法,通过高通量图像分析系统,研究不同细菌和3,3′-二丁二醇甲烷(DIM)对大肠杆菌肠道渗透性的影响。蠕虫感染了不同的肠道细菌或与DIM共处理48小时,并喂食氟西辛异体酸(FITC)-dextran过夜。然后,通过比较蠕虫体内的荧光图像和荧光强度,对肠道渗透性进行了研究。这种方法还可能识别影响动物模型中肠道渗透性的益生菌和致病性肠道细菌,并有效检查有害或促进健康的化学品对肠道渗透性和肠道健康的影响。然而,该协议在遗传水平上也有相当大的局限性,特别是用于确定哪些基因被改变来控制疾病,因为这种方法主要用于表型测定。此外,这种方法仅限于准确确定哪些致病基物引起炎症或增加蠕虫肠道在感染期间的渗透性。因此,需要进一步深入研究,包括利用突变细菌和线虫研究分子遗传机制,以及细菌的化学成分分析,以充分评估细菌和化学物质在确定肠道渗透性方面的作用。

Introduction

肠道渗透性被认为是与肠道微生物群和粘膜免疫相关的主要障碍之一,并可能受到多种因素的影响,如肠道微生物群修饰、上皮损伤或粘液层改变1。最近的论文报道了通过分析肠道细胞层2的荧光通量率来测量培养的人类肠道细胞的肠道渗透性的有效方案,但研究论文较少,提供了一个合适的程序来测量线虫的肠道渗透性,特别是在C.elegans中,使用FITC-dextran染色。

有两个代表性的协议,用于测量C.elegans的肠道渗透性使用尼罗河红3和二氧化钠(或蓝精灵测定)4,5。在此协议中,我们使用 FITC-dextran(平均分子量 10,000),其分子量远远高于尼罗河红 (MW = 318.37) 和二氧化钠 (MW = 792.85)。FITC-dextran 比尼罗河红或二氧化钠染料更类似于实际大分子营养素,如碳水化合物,这些营养素通过肠道层被吸收。无需荧光显微镜即可轻松评估用二氧化钠(蓝色蓝精灵染料)喂养的C. elegans的肠道渗透性。然而,在蓝精灵测定中,由于缺乏标准化,对肠道渗透性进行定量分析比较困难,应手动评估4、5。在尼罗河红测定中,尼罗河红也污渍细胞中的脂液滴,这可能干扰C.elegans6的肠道渗透性的精确测定。本方案能够快速、准确地定量分析使用各种肠道细菌和化学品治疗的大肠杆菌的肠道渗透性,同时避免不特定的脂质染色。

由于价格实惠、易于操作、动物伦理问题有限、寿命短,是生物领域的一种典型模型,有利于快速实验。特别是,在整个C.elegans基因组公布后,发现C.elegans基因组中近40%的基因与导致人类疾病的基因有正交。此外,透明体允许在生物体内观察,这有利于研究细胞事件和荧光应用在细胞生物学,例如,干细胞染色与DAPI或免疫组织化学9。C. elegans经常被用作实验动物,研究肠道微生物群与宿主之间的相互作用;此外,C.elegans用于筛选促进健康的益生菌10、11、12以及促进肠道健康的膳食化学品13、14。

假单核菌和肠球菌是已知的肠道细菌,对胃肠道系统有负面影响,特别是肠道的结肠上皮细胞15,16。因此,测量这些细菌触发的肠道渗透性是筛选和开发新药所必需的,这些药物可以恢复和减少细菌炎症和感染造成的损害。在这个协议中,我们测试了这些肠道细菌对大肠杆菌渗透性的影响。

我们还报告一个优化的协议,用于测试化学物质的肠道渗透性。为此,我们使用3,3′-二氧化铝甲烷(DIM)作为模型化学,因为DIM是一种生物活性代谢物化合物,来自Indole-3-卡宾醇,存在于布拉西卡食品植物中,据报道对小鼠17、18的IBD有治疗作用。此外,我们最近发现DIM改善肠道渗透功能障碍,在培养的人类肠道细胞以及模型线虫C.elegans19。

在这项研究中,我们使用了三种不同的实验条件。首先,我们测量了不同细菌,P.aeruginosa和E.粪便对肠道渗透性的影响(图1)。其次,我们测量了活和热灭活P.aeruginosa对肠道渗透性的影响(图2)。第三,我们测量了DIM(一种化学模型)对用P.aeruginosa喂养的C.elegans的肠道渗透性的影响(图3)。

本研究的目的是开发优化的规程,以测量大肠杆菌的肠道渗透性,通过处理各种肠道细菌和化学品而改变。

Protocol

1.准备P.aeruginosa PAO1和大肠杆菌OP50培养 准备500 mL的灭菌卢里亚-贝尔塔尼(LB)介质(表1),并将一个P.aeruginosa的单个菌落接种到介质中。在 37°C 下孵育培养 14 至 15 小时,摇动速度为 150 rpm。 将细菌培养物均匀地分配到两个500 mL离心管中,并在4°C下以3,220 x g将管离心30分钟。 去除上清液,直到体积为50 mL(初始体积的十分之一),?…

Representative Results

与P.aeruginosa PAO1一起孵育后,C.elegans在蠕虫体内的FITC-dextran荧光明显增加,而孵育后与其他两种细菌菌株的荧光相比(图1)。用大肠杆菌OP50、P.aeruginosa PAO1和E.粪便KCTC3206喂养的蠕虫的荧光强度分别为100.0±6.6、369.7~38.9和105.6~10.6%。 数据强调,P.aeruginosa对上皮肠道屏障造成更严重的损伤,因此,蠕虫的肠道渗透性明显增加。基于这一结…

Discussion

通过利用这种新方法确定C.elegans的肠道渗透性,结合自动荧光显微镜和定量图像分析,可以确定肠道微生物或化学物质在体内引起的差异,特别是在C.elegans肠道中。该协议适用于肠道渗透性调查,并适用于许多任务,如在应力条件下的活性氧物种 (ROS) 测定和形态检查,由于其方便和易于操作。此外,该方法还可用于确定治疗和预防方法对C.elegans中多种病原体的影响。特别?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了韩国科学技术研究院的校内研究资助(2E29563)的支持。

Materials

3,3’-diindolylmethane  Sigma D9568
90×15 mm Petri dishes SPL Life Sciences, South Korea 10090
60×15 mm Petri dishes SPL Life Sciences, South Korea 10060
Bactor Agar Beckton Dickinson REF. 214010
Formaldehyde solution  Sigma F1635
Brain Heart Infusion (BHI)  Becton Dickinson REF. 237500
Caenorhabditis elegans N2 Caenorhabditis Genetics Center (CGC) Wild type 
Cholesterol Sigma C3045
Costa Assay Plate, 96 Well Black With Clear Flat Bottom Non-treated, No Lid Polystyrene Corning Incorporated REF. 3631
Dimethyl sulfoxide Sigma D2650
Enterococcus faecalis KCTC 3206 Korean Collection for Type Culture KCTC NO. 3206 Falcutative anaerobic
Escherichia coli OP50 Caenorhabditis Genetics Center (CGC)
Fluorescein isothiocyanate – dextran Sigma FD10S
Harmony software  PerkinElmer verson 3.5
Luria-Bertani LB medium Merck VM743185 626  1.10285.5000
Magnesium sulfate heptahydrate  Fisher Bioreagents BP2213-1
Fluoromount aqueous mounting medium Sigma F4680
Operetta CLS High-Content Analysis System PerkinElmer  HH16000000
Peptone Merck EMD 1.07213.1000
Pseudomonas aeruginosa PA01 Korean Collection for Type Culture KCTC NO. 1637
Sodium Chloride Fisher Bioreagents BP358-1
Stereo Microscope Nikon, Japan SMZ800N
Yeast extract Becton Dickinson REF. 212750

References

  1. Bischoff, S. C., et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology. 14 (1), 189 (2014).
  2. Peng, L., Li, Z. R., Green, R. S., Holzman, I. R., Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition. 139 (9), 1619-1625 (2009).
  3. Ren, M., et al. Developmental basis for intestinal barrier against the toxicity of graphene oxide. Particle Fibre Toxicology. 15 (1), 26 (2018).
  4. Kissoyan, K. A. B., et al. Natural C. elegans microbiota protects against infection via production of a cyclic lipopeptide of the viscosin group. Current Biology. 29 (6), 1030-1037 (2019).
  5. Gelino, S., et al. Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLoS Genetics. 12 (7), 1006135 (2016).
  6. Escorcia, W., Ruter, D. L., Nhan, J., Curran, S. P. Quantification of lipid abundance and evaluation of lipid distribution in Caenorhabditis elegans by Nile red and oil red O staining. Journal of Visualized Experiments. (133), e57352 (2018).
  7. Johnson, T. E. Advantages and disadvantages of Caenorhabditis elegans for aging research. Experimental Gerontology. 38 (11-12), 1329-1332 (2003).
  8. Culetto, E., Sattelle, D. B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Human Molecular Genetics. 9 (6), 869-877 (2000).
  9. Hubbard, E. J. A. Caenorhabditis elegans germ line: A model for stem cell biology. Developmental Dynamics. 236 (12), 3343-3357 (2007).
  10. Park, M. R., et al. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Scientific Reports. 8, 7441 (2018).
  11. Kim, Y., Mylonakis, E. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infection and Immunity. 80 (7), 2500-2508 (2012).
  12. Nakagawa, H., et al. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell. 15 (2), 227-236 (2016).
  13. Dinh, J., et al. Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1. PLoS One. 9 (7), 103290 (2014).
  14. Vayndorf, E. M., Lee, S. S., Liu, R. H. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. Journal of Functional Foods. 5 (3), 1236-1243 (2013).
  15. Huycke, M. M., Abrams, V., Moore, D. R. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 23 (3), 529-536 (2002).
  16. Laughlin, R. S., et al. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Annals of Surgery. 232 (1), 133-142 (2000).
  17. Huang, Z., et al. 3,3′-Diindolylmethane decreases VCAM-1 expression and alleviates experimental colitis via a BRCA1-dependent antioxidant pathway. Free Radical Biology, Medicine. 50 (2), 228-236 (2011).
  18. Jeon, E. J., et al. Effect of Oral Administration of 3,3′-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. Journal of Agricultural and Food Chemistry. 64, 7702-7709 (2016).
  19. Kim, J. Y., et al. 3,3′-Diindolylmethane improves intestinal permeability dysfunction in cultured human intestinal cells and the model animal Caenorhabditis elegans. Journal of Agricultural and Food Chemistry. 67 (33), 9277-9285 (2019).
  20. Lee, S. Y., Kang, K. Measuring the Effect of Chemicals on the Growth and Reproduction of Caenorhabditis elegans. Journal of Visualized Experiments. (128), e56437 (2017).
  21. Schmeisser, S., et al. Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Molecular Metabolism. 2 (2), 92-102 (2013).
  22. Lee, S. Y., Kim, J. Y., Jung, Y. J., Kang, K. Toxicological evaluation of the topoisomerase inhibitor, etoposide, in the model animal Caenorhabditis elegans and 3T3-L1 normal murine cells. Environmental Toxicology. 32 (6), 1836-1843 (2017).
  23. Sutphin, G. L., Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. Journal of Visualized Experiments. (27), e1152 (2009).
  24. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., Ceron, J. Basic Caenorhabditis elegans methods: synchronization and observation. Journal of Visualized Experiments. (64), e4019 (2012).
  25. Al Atya, A. K., et al. Probiotic potential of Enterococcus faecalis strains isolated from meconium. Frontiers in Microbiology. 6, 227 (2015).
  26. Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology. 9, 1791 (2018).
  27. Pollack, M. The role of exotoxin A in pseudomonas disease and immunity. Reviews of Infectious Diseases. 5, 979-984 (1983).
  28. Vasil, M. L., Liu, P. V., Iglewski, B. H. Temperature-dependent inactivating factor of Pseudomonas aeruginosa exotoxin A. Infection and Immunity. 13 (5), 1467-1472 (1976).
  29. Horii, T., Muramatsu, H., Monji, A., Miyagishima, D. Release of exotoxin A, peptidoglycan and endotoxin after exposure of clinical Pseudomonas aeruginosa isolates to carbapenems in vitro. Chemotherapy. 51 (6), 324-331 (2005).
  30. Kirikae, T., et al. Biological characterization of endotoxins released from antibiotic-treated Pseudomonas aeruginosa and Escherichia coli. Antimicrobial Agents and Chemotherapy. 42 (5), 1015-1021 (1998).
  31. Morlon-Guyot, J., Mere, J., Bonhoure, A., Beaumelle, B. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Infection and Immunity. 77 (7), 3090-3099 (2009).
  32. Kim, Y. H., et al. 3,3′-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflammatory Bowel Diseases. 15 (8), 1164-1173 (2009).
  33. Kanmani, P., et al. Probiotics and its functionally valuable products-a review. Critical Reviews in Food Science and Nutrition. 53 (6), 641-658 (2013).
  34. Nguyen, M. T., Gotz, F. Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiology and Molecular Biology Reviews. 80 (3), 891-903 (2016).

Play Video

Cite This Article
Le, T. A. N., Selvaraj, B., Lee, J. W., Kang, K. Measuring the Effects of Bacteria and Chemicals on the Intestinal Permeability of Caenorhabditis elegans. J. Vis. Exp. (154), e60419, doi:10.3791/60419 (2019).

View Video