Summary

Fare Kornea ve Konjonktiva Canlı Görüntüleme için Özel Multifoton Mikroskop platformu

Published: May 17, 2020
doi:

Summary

Burada sunulan canlı fare oküler yüzey görüntüleme için bir multifoton mikroskobik platformdur. Floresan transgenik fare hücre çekirdekleri, hücre zarları, sinir lifleri ve oküler yüzey içinde kılcal damarların görüntülenmesi sağlar. Kolaj nasyonal yapılardan elde edilen doğrusal olmayan ikinci harmonik nesil sinyalleri stromal mimariler için etiketsiz görüntüleme sağlar.

Abstract

Konvansiyonel histolojik analiz ve hücre kültürü sistemleri in vivo fizyolojik ve patolojik dinamikleri tamamen simüle etmek için yeterli değildir. Multifoton mikroskopi (MPM) in vivo hücresel düzeyde biyomedikal çalışma için en popüler görüntüleme yöntemlerinden biri haline gelmiştir, avantajları yüksek çözünürlük, derin doku penetrasyonu ve minimal fototoksisite içerir. Biz özelleştirilmiş fare göz tutucu ve in vivo oküler yüzey görüntüleme için stereotaksik bir sahne ile bir MPM görüntüleme platformu tasarladık. Çift floresan protein muhabiri fare hücre çekirdekleri görselleştirme sağlar, hücre zarları, sinir lifleri, ve oküler yüzey içinde kılcal damarlar. Multifoton floresan sinyallerine ek olarak, ikinci harmonik nesil (SHG) elde etmek aynı anda kolajnöz stromal mimarinin karakterizasyonuna olanak sağlar. Bu platform kornea ve konjonktiva da dahil olmak üzere tüm oküler yüzey, doğru konumlandırma ile intravital görüntüleme için kullanılabilir.

Introduction

Kornea ve konjonktiva da dahil olmak üzere oküler yüzey yapıları, dış bozukluklar diğer derin oküler dokuları korumak. Gözün saydam ön kısmı olan kornea, ışığı göze yönlendirmek için hem kırılma lensi hem de koruyucu bariyer işlevi görür. Kornea epitelkorenin en dış tabakasıdır ve yüzeysel hücrelerin, kanat hücrelerinin ve bazal hücrelerin farklı katmanlarından oluşur. Kornea stroma keratositler ile gömülü sofistike paketlenmiş kolajnöz lamellae oluşur. Kornea endotel, düz altıgen hücrelerin tek bir tabaka, onun pompalama fonksiyonları ile nispeten susuz durumda kornea stroma tutarak kornea şeffaflığını korumak önemli bir role sahiptir1. Limbus kornea ve konjonktiva arasındaki sınırı oluşturur, ve kornea epitel kök hücrelerinin rezervuar2. Yüksek vaskülarize konjonktiva mukus ve gözyaşı üreterek gözleri yağlamak için yardımcı olur3.

Kornea yüzeyyapılarının hücre dinamiği geleneksel olarak histolojik analiz veya in vitro hücre kültürü ile incelenir ve bu dinamikler in vivo hücre dinamiklerini yeterince simüle etmeyebilir. Non-invaziv canlı görüntüleme yaklaşımı, bu nedenle, böyle bir boşluğu köprü olabilir. Yüksek çözünürlük, minimal fotohasar ve daha derin görüntüleme derinliği içeren avantajları nedeniyle, MPM biyolojik araştırma4,5,,6,,7,8çeşitli alanlarda güçlü bir modalite haline gelmiştir. Kornea görüntüleme için, MPM hücre içi NAD (P)H türetilen içsel otofloresan hücresel bilgi sağlar. Femtosecond lazer tarama altında non-centrosimetrik tip I kollajen liflerden elde edilen ikinci harmonik nesil (SHG) sinyalleri ek boyama prosedürleri olmadan kolajnöz stromal yapılar sağlar9. Daha önce, biz ve diğer gruplar hayvan ve insan kornea görüntüleme için MPM istismar var9,10,11,12,13,14,15.

Belirli hücre popülasyonlarında floresan proteinleri sergileyen transgenik fare hatları, hücre biyolojisi alanında gelişim, doku homeostazları, doku rejenerasyonu ve karsinogenez gibi çeşitli çalışmalarda yaygın olarak kullanılmaktadır. Biz kornea9,,10,saç folikülleri10 ve epidermis10 MPM tarafından in vivo görüntüleme için floresan proteinleri ile etiketlenmiş transgenik fare suşları kullanılır. TDTomato ve hücre çekirdeği ile etiketlenmiş hücre zarı ile çift floresan fare suşu iki fare suşlarından üretilir: R26R-GR (B6;129-Gt (ROSA)26Sortm1Ytchn/J, #021847)16 ve mT-mG (Gt(ROSA26)ACTB-tdTomato-EGFP, #007676)17. R26R-GR transgenik fare hattı, Gt (ROSA)26Sor lokusuna yerleştirilen H2B-EGFP füzyon geni ve mCherry-GPI çapa sinyali füzyon geni de dahil olmak üzere çift floresan protein muhabiri yapısı içerir. mT-mG transgenik türü hücre zarı hedefli tdTomato ve EGFP floresan Cre-reporter farelerdir. Cre rekombinasyon dan önce, tdTomato floresan ekspresyonu ile hücre zarı proteini çeşitli hücrelerde yaygın olarak bulunur. Bu transgenik fare suşları, cre uyarma olmadan tdTomato ile çekirdek-EGFP ve membranı görselleştirmemizi sağlar. İki dişi (R26R-GR+/+) ve bir erkek (mT-mG+/+) transgenik fare deneyler için yeterli fare üretmek için birlikte yetiştirildi. Bu çalışmada r26R-GR+/-;mT-mG+/- genotip, çift floresan fare türü olan yavruları kullanıldı. Daha önce açıklandığı gibi bir floresan muhabir fare hattı ile karşılaştırıldığında9,10, Bu çift floresan muhabir fare suşu görüntüleme süresi% 50 azaltılmış edinme ile bize sağlar.

Bu çalışmada, görüntüleme platformumuz ve çift floresan transgenik farelerimizi kullanarak oküler yüzeyin in vivo görüntülemesi için ayrıntılı bir teknik protokolü adım adım açıklıyoruz.

Protocol

Tüm hayvan deneyleri, Ulusal Tayvan Üniversitesi ve Chang Gung Memorial Hastanesi Kurumsal Hayvan Bakım ve Kullanım Komitesi (IACUC) tarafından onaylanan prosedürlere uygun olarak yapılmıştır. 1. Multifoton mikroskopi kurulumu Su daldırma 20x 1.00 NA hedefi(Şekil 1A)ile dik bir mikroskobu temel alan bir sistem oluşturun. Uyarma kaynağı olarak Ti: Safir lazer (dalga boyunda) kullanın. Lazer çıkış dalga boyunu EGFP için 880 n…

Representative Results

Bu canlı görüntüleme platformu kullanılarak, fare oküler yüzey hücresel düzeyde görselleştirilmiş olabilir. Oküler yüzeydeki tek hücreleri görselleştirmek için, hücre zarında ifade edilen çekirdek ve tdTomato ile egfp ile çift floresan transgenik fareler kullandık. Kollajen açısından zengin kornea stroma SHG sinyalleri ile vurgulandı. Kornea epitelinde yüzeyel hücreler, kanat hücreleri ve bazal hücreler(Şekil 2)görselleştirildi. ?…

Discussion

Bir kontrol yazılımı ile bu özel inşa MPM görüntüleme platformu fare epitel organlarının intravital görüntüleme için kullanılmıştır, deri dahil10, saç folikülü10 ve göz yüzeyi9,10 (Şekil 1A). Özel olarak üretilen sistem, projemizin başlangıcından bu yana çeşitli deneyler için optik bileşenleri değiştirme esnekliği için kullanılmıştır. Bu görünt…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bilim ve Teknoloji Bakanlığı, Tayvan (106-2627-M-002-034, 107-2314-B-182A-089, 108-2628-B-002-023, 108-2628-B-002-023), Ulusal Tayvan Üniversitesi Hastanesi (NTUH108-T17) ve Chang Gung Memorial Hastanesi, Tayvan (CMRPG3G1621, CMRPG3G1622, CMR3PG1623).

Materials

AVIZO Lite software Thermo Fisher Scientific Version: 2019.3.0
Bandpass filters Semrock FF01-434/17
FF01-500/24
FF01-585/40
Dichroic mirrors Semrock FF495-Di01-25×36 FF580-Di01-25×36
Galvano Thorlabs GVS002
Jade BIO control software SouthPort Corporation Jade BIO
Oxybuprocaine hydrochloride Sigma O0270000
PMT Hamamatsu H7422A-40
Polyesthylene Tube BECTON DICKINSON 427401
Stereotaxic mouse holder Step Technology Co.,Ltd 000111
Ti: Sapphire laser Spectra-Physics Mai-Tai DeepSee
Upright microscopy Olympus BX51WI
Vidisic Gel Dr. Gerhard Mann Chem-pharm. Fabrik GmbH D13581
Zoletil Virbac VR-2831

References

  1. DelMonte, D. W., Kim, T. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery. 37 (3), 588-598 (2011).
  2. Van Buskirk, E. M. The anatomy of the limbus. Eye (London). 3, 101-108 (1989).
  3. Hodges, R. R., Dartt, D. A. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Experimental Eye Research. 117, 62-78 (2013).
  4. Tan, H. Y., et al. Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo. Investigative Ophthalmology & Visual Science. 47 (12), 5251-5259 (2006).
  5. Konig, K. Multiphoton microscopy in life sciences. Journal of Microscopy. 200, 83-104 (2000).
  6. Rompolas, P., et al. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science. 352 (6292), 1471-1474 (2016).
  7. Park, S., et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nature Cell Biology. 19 (2), 155-163 (2017).
  8. Xin, T., Gonzalez, D., Rompolas, P., Greco, V. Flexible fate determination ensures robust differentiation in the hair follicle. Nature Cell Biology. 20 (12), 1361-1369 (2018).
  9. Wu, Y. F., et al. Intravital multiphoton microscopic imaging platform for ocular surface imaging. Experimental Eye Research. 182, 194-201 (2019).
  10. Wu, Y. F., Tan, H. Y., Lin, S. J. Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope. Methods in Molecular Biology. , (2019).
  11. Lo, W., et al. Fast Fourier transform-based analysis of second-harmonic generation image in keratoconic cornea. Investigative Ophthalmology & Visual Science. 53 (7), 3501-3507 (2012).
  12. Tan, H. Y., et al. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. Journal of Biomedical Optics. 12 (2), 024013 (2007).
  13. Jester, J. V., et al. Four-dimensional multiphoton confocal microscopy: the new frontier in cellular imaging. Oculur Surface. 2 (1), 10-20 (2004).
  14. Morishige, N., et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Investigative Ophthalmology & Visual Science. 48 (3), 1087-1094 (2007).
  15. Hao, M., et al. In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope. Experimental Eye Research. 91 (2), 308-314 (2010).
  16. Chen, Y. T., et al. R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One. 7 (9), 46171 (2012).
  17. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  18. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  19. Masihzadeh, O., Lei, T. C., Ammar, D. A., Kahook, M. Y., Gibson, E. A. A multiphoton microscope platform for imaging the mouse eye. Molecular Vision. 18, 1840-1848 (2012).
  20. Zhang, H., et al. Two-photon imaging of the cornea visualized in the living mouse using vital dyes. Investigative Ophthalmology & Visual Science. 54 (10), 6526-6536 (2013).
  21. Lee, J. H., et al. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo. Experimental Eye Research. 132, 101-108 (2015).
  22. Ehmke, T., et al. In vivo nonlinear imaging of corneal structures with special focus on BALB/c and streptozotocin-diabetic Thy1-YFP mice. Experimental Eye Research. 146, 137-144 (2016).
  23. Webster, M. T., Manor, U., Lippincott-Schwartz, J., Fan, C. M. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell. 18 (2), 243-252 (2016).
  24. Mesa, K. R., et al. Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation. Cell Stem Cell. 23 (5), 677-686 (2018).
  25. Goh, C. C., et al. Real-time imaging of dendritic cell responses to sterile tissue injury. Journal of Investigative Dermatology. 135 (4), 1181-1184 (2015).
  26. Kissenpfennig, A., et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity. 22 (5), 643-654 (2005).
  27. Chow, Z., Mueller, S. N., Deane, J. A., Hickey, M. J. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. Journal of Immunology. 191 (6), 3049-3056 (2013).
  28. Dudeck, A., et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity. 34 (6), 973-984 (2011).

Play Video

Cite This Article
Wu, Y., Ye, R., Pan, M., Lin, S., Tan, H. A Custom Multiphoton Microscopy Platform for Live Imaging of Mouse Cornea and Conjunctiva. J. Vis. Exp. (159), e60944, doi:10.3791/60944 (2020).

View Video