Summary

Analyser til validering af Histone Acetyltransferase hæmmere

Published: August 06, 2020
doi:

Summary

Hæmmere af histone acetyltransferaser (HATs, også kendt som lysin acetyltransferases), såsom CBP/p300, er potentielle terapeutiske til behandling af kræft. Men, strenge metoder til validering af disse hæmmere er nødvendige. Tre in vitro metoder til validering omfatter HAT assays med rekombinant acetyltransferaser, immunoblotting for histone acetylation i cellekultur, og ChIP-qPCR.

Abstract

Lysin acetyltransferaser (KATs) katalyse acetylation af lysinrester på histoner og andre proteiner til regulering af kromatindynamik og genekspression. KATs, såsom CBP/p300, er under intens undersøgelse som terapeutiske mål på grund af deres kritiske rolle i tumorigenesis af forskellige kræftformer. Udviklingen af nye små molekylehæmmere rettet mod histone acetyltransferase (HAT) funktion af KATs er udfordrende og kræver robuste analyser, der kan validere specificitet og styrken af potentielle hæmmere.

Denne artikel skitserer en pipeline af tre metoder, der giver streng in vitro validering for nye HAT-hæmmere (HATi). Disse metoder omfatter et reagensglas HAT-analyse, Chromatin Hyperacetylation Hæmning (ChHAI) analyse, og Chromatin Immunoprecipitation-kvantitative PCR (ChIP-qPCR). I HAT-analysen inkuberes rekombinant HAT’er med histoner i et reagensglas, hvilket giver mulighed for acetylation af specifikke lysinrester på histonehalerne. Denne reaktion kan blokeres af en HATi, og de relative niveauer af stedsspecifikke histoneacetylation kan måles via immunblotting. Inhibitorer identificeret i HAT-analysen skal bekræftes i cellemiljøet.

ChHAI-analysen bruger immunoblotting til at screene for nye HATi, der dæmper den robuste hyperacetylation af histoner fremkaldt af en histone deacetylasehæmmer (HDACi). Tilføjelsen af en HDACi er nyttigt, fordi basale niveauer af histon acetylation kan være svært at opdage via immunoblotting.

HAT- og ChHAI-analyserne måler globale ændringer i histonacetylation, men giver ikke oplysninger om acetylation i specifikke genomiske regioner. Derfor anvendes ChIP-qPCR til at undersøge virkningerne af HATi på histonacetylationsniveauer ved genregulerende elementer. Dette opnås gennem selektiv immunudfrielse af histone-DNA-komplekser og analyse af det rensede DNA gennem qPCR. Tilsammen giver disse tre analyser mulighed for omhyggelig validering af specifikke forhold, styrke og virkningsmekanisme af nye HATi.

Introduction

Lysin acetyltransferaser (KATs) katalyser acetylation af lysinrester på både histone og ikke-histonproteiner1,2,3,4. Nyere forskning viser, at KATs og deres acetyltransferase funktion kan fremme solid tumor vækst4,,5,,6,,7,,8,9. For eksempel er CREB-bindende protein (CBP)/p300 to paraloge KATs, der regulerer mange signalveje i kræft2,3. CBP/p300 har en vel karakteriseret histon acetyltransferase (HAT) funktion og katalysse Histone 3 Lysin 27 acetylation (H3K27ac)2,4,5,10,11, en vigtig markør for aktive smagsforstærkere, promotor regioner og aktiv gen transskription12,13,14. CBP/p300 fungerer som kritiske co-aktivatorer for pro-vækst signalering veje i faste tumorer ved at aktivere transskription af onkogener gennem acetylation af histonerogandre transskription faktorer4,9,15,16,17,18. På grund af deres rolle i tumor progression, CBP/p300 og andre KATs er under efterforskning for udvikling af nyehæmmere,der blokerer deres onkogen funktion4,5, 6,6,7,,8,9,18,19,20. A-485 og GNE-049 repræsenterer to vellykkede forsøg på at udvikle potente og specifikke hæmmere til CBP/p3004,9. Yderligere inhibitorer er i øjeblikket ved at blive undersøgt for CBP/p300 og andre kats.

Kvaliteten af tidligere beskrevne KAT-hæmmere (KATi) sættes spørgsmålstegn ved, med mange inhibitorer viser off måleffekter og dårlig karakterisering21. Derfor er streng karakterisering og validering af nye lægemiddelkandidater afgørende for udviklingen af kemiske sonder af høj kvalitet. Skitseret her er tre protokoller, der danner en pipeline til screening og strengt validere styrken og specificiteten af nye KATi, med særligt fokus på at hæmme HAT funktion (HATi) af KATs. CBP/p300 og deres hæmmere bruges som eksempler, men disse protokoller kan tilpasses til andre KAT’er, der har hat-funktion7.

Den første protokol er en in vitro histone acetyltransferase (HAT) assay, der udnytter renset rekombinant p300 og histoner i et kontrolleret reagensglas reaktion. Denne analyse er enkel at udføre, er omkostningseffektiv, kan bruges til at screene forbindelser i en lav gennemløb indstilling, og kræver ikke radioaktive materialer. I denne protokol katalyserer rekombinant p300 lysinacetylation på histonehaler i løbet af en kort inkubationstid, og niveauerne af histonacetylation måles ved hjælp af standardimmunoblottingprocedurer. Den enzymatiske reaktion kan udføres i nærvær eller fravær af CBP/p300-hæmmere til at screene for forbindelser, der reducerer histonacetylation. Derudover kan HAT-analysen bruges til at kontrollere, om nye forbindelser er selektive for CBP/p300 ved at vurdere deres aktivitet i forhold til andre rensede KAT’er, såsom PCAF. HAT-analysen er et glimrende udgangspunkt for at undersøge nye hæmmere på grund af sin enkelhed, lave omkostninger, og evnen til at bestemme styrken / selektiviteten af en hæmmer. Faktisk er denne protokol ofte bruges i litteraturen som en in vitro skærm5,10. Men, inhibitorer identificeret i HAT analysen er ikke altid effektive i cellekultur, fordi et reagensglas reaktion er meget enklere end en levende celle system. Det er derfor vigtigt yderligere at karakterisere hæmmere i cellekultureksperimenter22,23.

Den anden protokol i rørledningen er Chromatin Hyperacetylation Hæmning (ChHAI) assay. Denne cellebaserede analyse anvender histone deacetylasehæmmere (HDACi) som et værktøj til at hyperacetylate histoner i kromatin før co-inkubation med en HATi24. Basal histonacetylation kan være lav i cellekultur, hvilket gør det vanskeligt at sonde for via immunoblotting uden tilsætning af en HDACi at øge acetylation. Formålet med ChHAI-analysen er at identificere nye HATi, der kan dæmpe stigningen i histonacetylation forårsaget af HDAC-hæmning. Fordelene ved denne analyse omfatter dens lave omkostninger, relativ lethed at udføre, og brugen af celler i kultur, som giver mere fysiologisk relevans end reagensglas HAT assay. I lighed med HAT-analysen bruger denne protokol standardimmunisering til dataindsamling.

HAT og ChHAI-analyserne giver data om styrken af nye forbindelser til at hæmme global histonacetylation, men giver ikke indsigt i, hvordan disse forbindelser påvirker modifikationer i specifikke genomiske regioner. Derfor er den endelige protokol, Chromatin Immunoprecipitation-quantitative Polymerase Chain Reaction (ChIP-qPCR) et cellekultureksperiment, der undersøger DNA-protein interaktioner i bestemte områder af genomet. I ChIP-protokollen krydslinkes kromatin for at bevare DNA-proteininteraktioner. Kromatin udvindes derefter fra celler, og DNA-proteinkomplekset gennemgår selektiv immunoprecipation for det pågældende protein (f.eks. ved hjælp af et antistof, der er specifikt for H3K27ac). DNA’et renses og analyseres derefter ved hjælp af qPCR. For eksempel kan ChIP-qPCR bruges til at afgøre, om en ny HATi nedregulerer histonacetylation på individuelle oncogenes, såsom Cyclin D125. Mens ChIP-qPCR er en almindelig teknik, der anvendes i marken, kan det være svært at optimere4,10,26. Denne protokol indeholder tip til at undgå potentielle faldgruber, der kan opstå under udførelse af ChIP-qPCR-proceduren, og omfatter kvalitetskontrolkontroller, der skal udføres på dataene.

Når disse tre protokoller bruges sammen, giver de mulighed for streng karakterisering og validering af nye HATi. Derudover tilbyder disse metoder mange fordele, fordi de er nemme at udføre, relativt billige og levere data om globale såvel som regionale histon acetylation.

Protocol

1. In vitro HAT-analyse Forberedelse af bufferBEMÆRK: Se tabel 1 for bufferopskrifter. Der tilberedes 5x analysebuffer og 6x natriumdycylsulfat (SDS), og opbevares ved -20 °C. Aliquot SDS i 1 ml aliquots. Forbered 10x SDS gel løbebuffer og 10x TBST og opbevares ved stuetemperatur. Der klargørs 1x overførselsbuffer og opbevares ved 4 °C.FORSIGTIG: Kontroller sikkerhedsdatabladet for alle kemikalier, der anvendes i denne protokol. SDS,…

Representative Results

In vitro histone acetyltransferase (HAT) assay kan bruges til at sonde for forbindelser, der hæmmer p300 HAT aktivitet mod en histone substrat. Figur 1A giver et eksperimentelt skematisk for HAT-analysen. Anakarinsyre, en kendt HATi3,38, blev udnyttet i denne analyse i en koncentration spænder fra 12.5-100 μM. Ved 100 μM nedregulerer anacardinsyre p300 histonacetylation ved Histone 3, Lysines 9 og 18 versus kontrol-DMSO-behandlin…

Discussion

Lysin acetyltransferaser (KATs) acetylate flere lysinrester på histonehaler og transskriptionsfaktorer til regulering af gentranskription2,3. Arbejde i de sidste to årtier har afsløret, at KNG’er, såsom CBP/p300, PCAFogGCN5, interagere med onkogen transskription faktorer og bidrage til at drive tumorvækst i flere solide tumortyper4,,5,9,<sup cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af tilskud fra James og Esther King Biomedical Research Program (6JK03 og 20K07), og Bankhead-Coley Cancer Research Program (4BF02 og 6BC03), Florida Department of Health, Florida Breast Cancer Foundation, og UF Health Cancer Center. Derudover vil vi gerne takke Dr. Zachary Osking og Dr. Andrea Lin for deres støtte under offentliggørelsesprocessen.

Materials

1.5 ml tube Fisher Scientific 05-408-129 For all methods
10 cm dish Sarstedt AG & Co. 83.3902 For cell culture of MCF-7 cells
10 ul tips Fisher Scientific 02-707-454 For all Methods
1000 ul tips Corning 4846 For all Methods
10X Glycine buffer For Method 3. See Table 1 for recipe.
10X Running Buffer For Methods 1 and 2. See Table 1 for recipe.
10X TBST For Methods 1 and 2. See Table 1 for recipe.
12 well plate Corning 3513 For Method 2
15 cm dish Sarstedt AG & Co. 83.3903 For Method 3
15 ml conical tube Santa Cruz Biotechnology sc-200249 For Methods 2 and 3
1X TBST with 5% milk and 0.02% Sodium Azide For Methods 1 and 2. Can be used to dilute primary antibodies that will be used more than once. Allows for short-term storage of primary antibody dilutions. Do not use for secondary antibody diluton. CAUTION: Sodium Azide is toxic.
1X TBST with 5% milk For Methods 1 and 2. Used to block PVDF membrane and for antibody diltions. See Table 1 for recipe.
200 ul tips Corning 4844 For all Methods
2-mercaptoethanol Sigma-Aldrich M3148 for SDS sample buffer preparation
4-20% polyacrylamide gel Thermo Fisher: Invitrogen XP04205BOX For Methods 1 and 2
5X Assay buffer For Method 1. See Table 1 for recipe.
5X Passive lysis buffer For Method 2. See Table 1 for recipe.
6X Sodium Dodecyl Sulfate (SDS) For Methods 1 and 2. See Table 1 for recipe.
A-485 MedChemExpress HY-107455 CBP/p300 Inhbitor for use in Methods 2 and 3. Dissolved in DMSO.
Acetyl-CBP(K1535)/p300(K1499) antibody Cell Signaling Technology 4771 For Method 1
Acetyl-CoA Sigma-Aldrich A2056 for use in Method 1
Acetyl-Histone H3 (Lys 27) antibody (H3K27ac) Cell Signaling Technology CST 8173 antoibodies for H3K27ac for immunoblots and ChIP
Acetyl-Histone H3 (Lys18) antibody (H3K18ac) Cell Signaling Technology CST 9675 antoibodies for H3K18ac for immunoblots and ChIP
alpha tubulin antibody Millipore Sigma T5168 For Method 2. Dilute 1:20,000
Anacardic acid Cayman Chemical 13144 For Method 1
anti-mouse IgG HRP linked secondary antibody Cell Signaling Technology 7076 For Methods 1 and 2. Dilute 1:10,000
anti-rabbit IgG secondary antibody Jackson ImmunoResearch 711-035-152 For Methods 1 and 2. Dilute 1:10,000 to 1:20,000
Autoradiography film MIDSCI BX810 For Methods 1 and 2
Belly Dancer Rotating Platform Stovall Life Science Incorporated not available For Methods 1 and 2
Bovine Calf Serum (BCS) HyClone SH30072.03 cell culture media
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153 for buffer preparation
Bromophenol Blue Sigma-Aldrich B0126 for SDS sample buffer preparation
CDTA Spectrum Chemical 125572-95-4 For buffer preparation
cell scraper Millipore Sigma CLS3010 For Method 3
ChIP dilution buffer For Method 3. See Table 1 for recipe.
ChIP Elution Buffer For Method 3. See Table 1 for recipe.
Complete DMEM for MCF-7 Cells For Methods 2 and 3. See Table 1 for recipe.
Covaris 130 µl microTUBE Covaris 520045 Sonication tube for use with Covaris S220 in Method 3
Covaris S220 Focused-ultrasonicator Covaris S220 DNA sonicator for use in Method 3
Dimethyl sulfoxide (DMSO) Sigma-Aldrich 41639 for drug dilution and vehicle control treatment
DL-Dithiothreitol (DTT) Sigma-Aldrich 43815 for SDS sample buffer preparation
DMEM Corning 10-013-CV cell culture media
EDTA Fisher Scientific BP120-1 for buffer preparation
Example transfer tank and transfer apparatus Bio-rad 1704070 For Methods 1 and 2
EZ-Magna ChIP A/G Chromatin Immunoprecipitation Kit Millipore Sigma 17-10086 For Method 3
FK228 (Romidepsin) Cayman Chemical 128517-07-7 HDAC Inhibitor for use in Method 2
Formaldehyde solution Sigma-Aldrich F8775 for cell fixation
glycerol Fisher Scientific BP229-1 For buffer preparation
glycine Sigma-Aldrich G7126 for buffer preparation
HEPES Sigma-Aldrich 54457 for buffer preparation
High salt wash buffer For Method 3
IGEPAL (NP-40) Sigma-Aldrich I3021 for buffer preparation
Immobilon Chemiluminescent HRP Substrate Millipore Sigma WBKLS0500 For Methods 1 and 2
KCl Fisher Scientific BP366-500 for buffer preparation
LiCl Sigma-Aldrich L9650 For buffer preparation
LiCl wash buffer For Method 3. See Table 1 for recipe.
Low salt wash buffer For Method 3. See Table 1 for recipe.
Magnetic Separator Promega Z5341 For use in Method 3
Methanol Sigma-Aldrich 494437 For buffer preparation
Mini gel tank Invitrogen A25977 For Methods 1 and 2
MS-275 (Entinostat) Cayman Chemical 209783-80-2 HDAC Inhibitor for use in Method 2. Dissolved in DMSO.
NaCl Fisher Scientific 7647-14-5 for buffer preparation
NaOH Fisher Scientific S318-100 for buffer preparation in Methods 1 and 2
Normal Rabbit IgG Bethyl Laboratories P120-101 Control rabbit antibody for use in Method 3
Nuclei swelling buffer For Method 3. See Table 1 for recipe.
PCR Cleanup Kit Qiagen 28104 For use in Method 3
Penicillin/Streptomycin 100X Corning 30-002-CI cell culture media
Phosphate-buffered saline (PBS) Corning 21-040-CV For Methods 2 and 3
PIPES Sigma-Aldrich 80635 for buffer preparation
powdered milk Nestle Carnation For Methods 1 and 2
Power Pac 200 for western blot transfer Bio-rad For Methods 1 and 2
Power Pac 3000 for SDS gel running Bio-rad For Methods 1 and 2
Prestained Protein Ladder Thermo Fisher 26616 For Methods 1 and 2
Protease Inhibitor Cocktail Sigma-Aldrich PI8340 for use in Method 3
Protein A Magentic Beads New England BioLabs S1425S For use in Method 3
Proteinase K New England BioLabs P8107S For use in Method 3
PTC-100 Programmable Thermal Controller MJ Research Inc. PTC-100 For Method 1
PVDF Transfer Membrane Millipore Sigma IEVH00005 For Methods 1 and 2
Recombinant H3.1 New England BioLabs M2503S for use in Method 1
Recombinant p300 ENZO Life Sciences BML-SE451-0100 for use in Method 1
SAHA (Vorinostat) Cayman Chemical 149647-78-9 HDAC Inhibitor for use in Method 2
SDS lysis buffer For Method 3. See Table 1 for recipe.
Sodium Azide Fisher Scientific 26628-22-8 For Methods 1 and 2. CAUTION: Sodium Azide is toxic. See SDS for proper handling.
Sodium Bicarbonate Fisher Scientific S233-500 for buffer preparation
Sodium deoxycholate Sigma-Aldrich D6750 for buffer preparation
Sodium dodecyl sulfate (SDS) Sigma-Aldrich 71725 for SDS sample buffer preparation
Standard Heatblock VWR Scientific Products MPN: 949030 For Methods 1 and 2
Table top centrifuge Eppendorf 5417R For all methods
TE buffer For Method 3. See Table 1 for recipe.
Transfer buffer For Methods 1 and 2. See Table 1 for recipe.
Trichostatin A Cayman Chemical 58880-19-6 HDAC Inhibitor for use in Method 2
Tris Fisher Scientific BP152-5 for buffer preparation
Triton X-100 Sigma-Aldrich T8787 for buffer preparation
Tween 20 Sigma-Aldrich 9005-64-5 for buffer preparation in Methods 1 and 2
X-ray film processor Konica Minolta Medical & Graphic, Inc. SRX-101A For Methods 1 and 2

References

  1. Simon, R. P., Robaa, D., Alhalabi, Z., Sippl, W., Jung, M. KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases. Journal of Medicinal Chemistry. 59 (4), 1249-1270 (2016).
  2. Weinert, B. T., et al. Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell. 174 (1), 231-244 (2018).
  3. Dancy, B. M., Cole, P. A. Protein lysine acetylation by p300/CBP. Chemical Reviews. 115 (6), 2419-2452 (2015).
  4. Lasko, L. M., et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature. 550 (7674), 128-132 (2017).
  5. Yang, H., et al. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents. Molecular Cancer Therapeutics. 12 (5), 610-620 (2013).
  6. Baell, J. B., et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature. 560 (7717), 253-257 (2018).
  7. Coffey, K., et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. Plos One. 7 (10), 45539 (2012).
  8. Majaz, S., et al. Histone acetyl transferase GCN5 promotes human hepatocellular carcinoma progression by enhancing AIB1 expression. Cell & Bioscience. 6, 47 (2016).
  9. Jin, L., et al. Therapeutic Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-Resistant Prostate Cancer. Cancer Research. 77 (20), 5564-5575 (2017).
  10. Raisner, R., et al. Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Reports. 24 (7), 1722-1729 (2018).
  11. Jin, Q., et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. The EMBO Journal. 30 (2), 249-262 (2011).
  12. Pradeepa, M. M. Causal role of histone acetylations in enhancer function. Transcription. 8 (1), 40-47 (2017).
  13. Creyghton, M. P., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America. 107 (50), 21931-21936 (2010).
  14. Wang, Z., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics. 40 (7), 897-903 (2008).
  15. Ianculescu, I., Wu, D. Y., Siegmund, K. D., Stallcup, M. R. Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. The Journal of Biological Chemistry. 287 (6), 4000-4013 (2012).
  16. Zhong, J., et al. p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Research. 74 (6), 1870-1880 (2014).
  17. Fu, M., et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. The Journal of Biological Chemistry. 275 (27), 20853-20860 (2000).
  18. Emami, K. H., et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America. 101 (34), 12682-12687 (2004).
  19. Stimson, L., et al. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Molecular Cancer Therapeutics. 4 (10), 1521-1532 (2005).
  20. Modak, R., et al. Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor. ACS Chemical Biology. 8 (6), 1311-1323 (2013).
  21. Dahlin, J. L., et al. Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors. Nature Communications. 8 (1), 1527 (2017).
  22. Liao, D. Identification and characterization of small-molecule inhibitors of lysine acetyltransferases. Methods in Molecular Biology. 1238, 539-548 (2015).
  23. Gardberg, A. S., et al. Make the right measurement: Discovery of an allosteric inhibition site for p300-HAT. Structural dynamics. 6 (5), 054702 (2019).
  24. Ceccacci, E., Minucci, S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. British Journal of Cancer. 114 (6), 605-611 (2016).
  25. Tashiro, E., Tsuchiya, A., Imoto, M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Science. 98 (5), 629-635 (2007).
  26. Collas, P. The current state of chromatin immunoprecipitation. Molecular Biotechnology. 45 (1), 87-100 (2010).
  27. JoVE. JoVE Science Education Database. Basic Methods in Cellular and Molecular Biology. The Western Blot. JoVE. , (2020).
  28. Gooderham, K. Transfer techniques in protein blotting. Methods in Molecular Biology. 1, 165-178 (1984).
  29. Westermeier, R. . Electrophoresis in practice: A guide to methods and applications of DNA and protein separations. , (2004).
  30. Towbin, H., Staehelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America. 76 (9), 4350-4354 (1979).
  31. Kurien, B. T., Scofield, R. H. Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots. Methods in Molecular Biology. 536, 55-65 (2009).
  32. Kyhse-Andersen, J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods. 10 (3-4), 203-209 (1984).
  33. Tovey, E. R., Baldo, B. A. Comparison of semi-dry and conventional tank-buffer electrotransfer of proteins from polyacrylamide gels to nitrocellulose membranes. Electrophoresis. 8 (9), 384-387 (1987).
  34. Greenfield, E. A. Protein Quantitation. Cold Spring Harbor Protocols. 2018 (6), (2018).
  35. Barrow, J. J., Masannat, J., Bungert, J. Neutralizing the function of a β-globin-associated cis-regulatory DNA element using an artificial zinc finger DNA-binding domain. Proceedings of the National Academy of Sciences of the United States of America. 109 (44), 17948-17953 (2012).
  36. Leach, K. M., et al. Characterization of the human beta-globin downstream promoter region. Nucleic Acids Research. 31 (4), 1292-1301 (2003).
  37. ChIP-qPCR and Data Analysis. Sigma-Aldrich Available from: https://www.sigmaaldrich.com/technical-documents/articles/biology/chip-qpcr-data-analysis.html (2020)
  38. Balasubramanyam, K., Swaminathan, V., Ranganathan, A., Kundu, T. K. Small molecule modulators of histone acetyltransferase p300. The Journal of Biological Chemistry. 278 (21), 19134-19140 (2003).
  39. Using ImageJ to quantify blots. Diamantina Institute – University of Queensland Available from: https://di.uq.edu.au/community-and-alumni/sparq-ed-services/using-imagej-quantify-blots (2020)
  40. Kalkhoven, E., et al. Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Human Molecular Genetics. 12 (4), 441-450 (2003).
  41. Ortega, E., et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature. 562 (7728), 538-544 (2018).
  42. Koutelou, E., Hirsch, C. L., Dent, S. Y. R. Multiple faces of the SAGA complex. Current Opinion in Cell Biology. 22 (3), 374-382 (2010).
  43. Wang, Y., et al. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chemistry & Biology. 22 (2), 273-284 (2015).
  44. Hu, E., et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. The Journal of Pharmacology and Experimental Therapeutics. 307 (2), 720-728 (2003).
  45. Lee, B. I., et al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Research. 61 (3), 931-934 (2001).
  46. Leus, N. G. J., et al. HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Scientific Reports. 7, 45047 (2017).
  47. Rossi, L., et al. HDAC1 inhibition by MS-275 in mesothelial cells limits cellular invasion and promotes MMT reversal. Scientific Reports. 8 (1), 8492 (2018).

Play Video

Cite This Article
Waddell, A. R., Liao, D. Assays for Validating Histone Acetyltransferase Inhibitors. J. Vis. Exp. (162), e61289, doi:10.3791/61289 (2020).

View Video