Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

用组织培养幼苗制备和饲养轴性昆虫用于叶甲虫的宿主 - 肠道微生物群相互作用研究

Published: October 8, 2021 doi: 10.3791/63195

Summary

为了获得轴性昆虫,其卵表面被灭菌,然后使用轴性叶子饲养孵化的幼虫。这种方法为抗焦虑昆虫的制备提供了一种有效的方法,而无需施用抗生素或开发人造饮食,这也可以应用于其他食叶昆虫。

Abstract

昆虫的肠道被各种细菌定植,这些细菌可以深刻地影响宿主的生理特征。将特定的细菌菌株引入轴性昆虫中是验证肠道微生物功能并阐明肠道微生物 - 宿主相互作用机制的强大方法。给予抗生素或对卵子表面进行消毒是两种常用的方法,用于清除昆虫的肠道细菌。然而,除了抗生素对昆虫的潜在不利影响外,以前的研究表明,喂食抗生素并不能消除肠道细菌。因此,无菌人工饲料通常用于维持轴性昆虫,这是一个繁琐且劳动密集型的过程,不能完全类似于天然食品中的营养成分。这里描述的是一种有效且简单的方案,用于制备和维持叶甲虫(Plagiodera versicolora)的轴性幼虫。具体来说,甲虫卵的表面被消毒,然后使用无菌的杨树叶来饲养轴系幼虫。通过培养依赖性和培养无关性测定进一步证实了昆虫的轴性状态。通过结合鸡蛋消毒和无菌栽培,共同开发了一种有效且方便的方法来获得轴性 花叶假单胞菌,为其他食叶昆虫提供了易于转移的工具。

Introduction

与哺乳动物类似,昆虫消化道是食物消化和吸收的空腔。大多数昆虫含有多种共生细菌,这些细菌在肠道中茁壮成长,并以宿主1提供的营养为生。肠道共生群落对昆虫的多种生理过程具有深远的影响,包括食物消化和解毒234,营养和发育567,对病原体和寄生虫的防御891011,化学通讯1213 和行为1415.有趣的是,一些肠道微生物群可能兼性致病性或被入侵病原体操纵以加重感染,这表明肠道细菌在某些情况下可能是有害的161718。肠道细菌还可以作为生物技术应用和害虫管理的微生物资源。例如,来自植物噬菌和木食虫的木质纤维素消化细菌用于消化植物细胞以开发生物燃料19。表达生物活性分子的工程肠道共生体的分散是一种新颖而有前途的策略,用于管理传播传染病的农林害虫和蚊子192021,其也可用于改善益虫的适应性22。因此,说明肠道细菌 在体内 的行为被认为是充分利用其功能并将其进一步用于各种应用的优先事项。

动物可以在肠道中携带1至>1000种共生微生物物种1。因此,很难准确地验证个体细菌分类群或其组装在动物体内的表现,以及宿主或其微生物伙伴是否驱动特定功能。因此,制备轴性幼虫以通过单物种或多物种定植获得无菌昆虫对于研究细菌功能和与昆虫的相互作用是必要的23。目前,给予抗生素鸡尾酒和对昆虫卵表面进行灭菌是去除肠道细菌的常用方法14242526。然而,抗生素饮食不能完全消除肠道细菌,并对宿主昆虫的生理学产生负面影响2728。因此,使用抗生素治疗的昆虫可能会掩盖某些肠道细菌的真正能力。幸运的是,卵的表面灭菌可以消除这个问题2329,这对实验昆虫没有或可以忽略不计的影响。此外,人工饮食不能完全类似于天然昆虫食品,开发人造饮食是一个昂贵且耗费人力的过程3031

柳叶甲虫,Plagiodera versicolora(Laicharting)(鞘翅目:Chrysomelidae),是一种广泛的食叶害虫,主要以水杨树为食,如柳树(柳树)和杨树(杨树L)。3233.在这里,柳叶甲虫被用作代表性的食叶昆虫,以制定一种方案来准备和饲养无菌昆虫。我们利用植物组织培养物获得无菌的杨树叶,以从灭菌卵中培育出杂色P.通过培养依赖性和培养无关性测定验证了花斑蚴幼虫的轴性状态。该协议可以维持轴系昆虫,这些昆虫比人工饮食的昆虫饲养更能模仿野生条件。更重要的是,这种方法以非常低的成本方便,这增加了获得轴性昆虫用于未来昆虫 - 肠道微生物群相互作用研究的可行性,特别是对于没有发达人工饲料的非模型昆虫。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 昆虫饲养

  1. 在生长室中维持花 斑芽孢杆菌 种群,条件为27°C和70±5%相对湿度,光周期为16小时光照/ 8小时黑暗。将它们放在带有瓷砖湿吸纸的穿孔塑料盒中,并喂它们新鲜的杨树枝。在吸收纸上喷洒清水以保持水分,并每两天更换一次树枝。
  2. 分离成虫在化蛹后产卵。给它们喂食嫩叶以获得更多的卵。
  3. 收集新产卵(24小时内)。将卵放在潮湿的吸收纸上60小时,以制备轴性幼虫。
    注意:新产卵将在~72小时后孵化。对卵表面进行灭菌的最佳时间是孵化前一天;否则,成功孵化的种蛋数量将减少。

2. 无菌杨树养殖

  1. 准备村重和Skoog(MS)培养基和1mg / mL α-萘乙酸(NAA)储备溶液(见 材料表)。
  2. 在生物安全罩中,将50μL 1mg / mL NAA储备溶液加入500mL MS培养基中,摇匀至充分混合,每个组织培养容器倒入约50mL并等待凝固。
  3. 准备手术刀,酒精灯和镊子;对生物安全罩中酒精灯火焰中的手术刀和镊子进行消毒。
  4. 在生长约1个月时从杨树幼苗(无菌组织培养的幼苗)中切割具有顶端芽或侧芽的3-4厘米茎段,并将其插入培养基中,每个容器一个或两个茎段。
  5. 将这些茎段在25°C和50±10 cd光强度的生长室中孵育,光周期为16小时光照/ 8小时黑暗约30天。使用无菌叶子喂养轴酸幼虫。

3. 卵表面杀菌和饲养轴缩幼虫

  1. 高压灭菌培养皿,画笔,滤纸,蒸馏水和含有LB(Luria-Bertani)琼脂培养基的培养皿。
  2. 将带有粘附卵的叶子放在培养皿中,使用镊子小心地从叶子上取下鸡蛋,然后将其转移到另一个培养皿中。
    注意:此步骤应非常小心地进行,因为卵粘附在叶子上。
  3. 用75%乙醇洗涤这些卵8分钟,并用无菌水重复洗涤四次。
  4. 将卵转移到LB琼脂培养基上,以保持孵化的水分。
    注意:使用LB琼脂培养基可以帮助验证消毒后的鸡蛋是否无菌。
  5. 将培养皿置于生长室中,等待卵在24小时内孵化。
  6. 在生物安全罩中,在培养皿中铺上三张湿滤纸,将无菌杨树叶放在纸上,收集幼虫并将其放在叶子上,用parafilm密封培养皿,并在27°C和70±5%相对湿度的生长室中孵育,光周期为16小时光照/ 8小时黑暗。
    注意:组织培养的叶子很脆弱,可以迅速失去水分。因此,在将叶子转移到培养皿时,需要使用湿润的滤纸。
  7. 每两天更换一次叶子。
  8. 对于常规饲养的群体,将卵从叶子转移到含有湿滤纸的培养皿中,并用无菌杨树叶喂养这些幼虫。

4. 用培养依赖性测定验证轴酸幼虫

  1. 从无菌和常规饲养的群体中随机选择3个1龄2nd和3rd幼虫。
  2. 在立体显微镜下用无菌剪刀和镊子解剖3 幼虫,并将其内脏收集在微量离心管中。将完整的1 幼虫和2龄 幼虫收集在管中。
    注意:收集整个1st2nd 幼虫,因为它们太小而无法解剖,并保持它们的内脏完整。
  3. 向1.5 mL管中加入100μL磷酸盐缓冲盐水和三个钢球,并使用打珠均质器将组织研磨成匀浆。
  4. 使用无菌玻璃铺展棒将100μL匀浆加入LB琼脂培养基和板中。
  5. 将板在37°C下放置24小时并观察细菌菌落。

5. 通过与培养无关的测定验证轴缩性个体

  1. 使用DNA提取试剂盒提取组织的总DNA(在第4节中获得)。
  2. 使用260nm处的分光光度计测量DNA浓度。
  3. 使用通用的16S rRNA引物和PCR扩增细菌16S rRNA基因。用18μL的1.1x PCR预混液(见 材料表),0.5μL的27F引物(5'-ACGGATACCTTGTTACGAC-3'),0.5μL的1495R引物(5'-ACGGATACCTTGTTACGAC-3')和100ng模板DNA建立反应系统。将PCR条件在95°C下设置3分钟;28次循环,95°C循环30秒,55°C循环1分钟,72°C循环1分钟;然后用72°C加热10分钟。将PCR产物储存在4°C直至进一步分析。
  4. 将PCR产物与核酸染料混合,并在1x TAE缓冲液中的1%琼脂糖凝胶上使用电泳对其进行分析。使用10μLDNA标记物作为参考。
  5. 用UV透射仪观察凝胶,并在1,500 bp左右寻找靶片段。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

P. versicolora的寿命阶段如图1所示。成年男性比成年女性小(图1A)。在田野里,甲虫将其卵聚集在叶子上;在这里,四个卵从叶子上分离出来(图1B)。用于斧头昆虫饲养的杨树茎段和幼苗如图2所示。3幼虫的肠道如图3所示,肠道段用白色括号标记。

虽然在任何无菌组中都没有观察到细菌菌落,但在所有常规饲养的组中都观察到它们(图4),这表明来自喂养组织培养的杨树叶的灭菌卵的幼虫不含细菌。~1,500 bp PCR条带出现在所有传统饲养的组中。相比之下,在无菌组或阴性对照组中未观察到条带(图5),这意味着在轴减少幼虫中不存在肠道细菌。无菌幼虫和传统养殖的 花斑 蚴幼虫在幼虫发育时间、存活率或外观上没有差异。然而,无菌幼虫的体重在第5天 略高于常规饲养的幼虫,尽管在化蛹16之前质量会变得相似。这些结果证实了该方案制备和饲养轴缩幼虫的可行性。

Figure 1
图1:柳叶甲虫的生命阶段,Plagiodera versicolora.A)雌性和雄性成虫;()鸡蛋;(C)1幼虫;(龄幼虫;()三龄幼虫;和(F)蛹。比例尺 = 1 mm。请点击此处查看此图的大图。

Figure 2
图2:杨树茎段和幼苗。A)具有顶端芽的茎段;()茎段10天后长根;()一个月大的幼苗。比例尺 = 1 cm 。请点击此处查看此图的大图。

Figure 3
图3:三龄幼虫的肠道。 前肠,中肠和后肠用括号标记。比例尺 = 1 mm 。请点击此处查看此图的大图。

Figure 4
图4:通过在LB琼脂平板上培养肠道或整个昆虫匀浆来确认肠道细菌消除的功效。 在幼虫喂养的无菌杨树叶中未观察到细菌,而在常规饲养的群体中观察到细菌。使用1st2nd3rd 龄幼虫进行测定。每组随机选择3只幼虫。缩写:GF =无菌幼虫;CR = 传统养殖的幼虫。 请点击此处查看此图的大图。

Figure 5
图5:通过使用通用16S rRNA基因引物的PCR测定来确认肠道细菌消除的功效。 16S rRNA基因的靶区为~1,500bp.1st2nd3rd 龄幼虫用于测定。在GF组中未观察到目标条带。缩写:NC =阴性对照;GF = 无菌;CR = 传统饲养。 请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

制备无菌幼虫和通过重新引入特定细菌菌株获得无菌幼虫是阐明宿主 - 微生物相互作用机制的有力方法。新孵化的幼虫以两种主要方式获得肠道微生物群:从母亲到后代的垂直传播或从兄弟姐妹和环境的水平获取34。前者可以通过亲本通过污染卵表面35将后代转移给后代来实现。因此,通过对昆虫卵表面27、28、29进行灭菌来获得轴性幼虫是非常可行的。给予几种抗生素的混合物是开发轴性昆虫的另一种方法,但有几个缺点28。相比之下,卵表面灭菌后进行轴性饮食更适合发育轴性昆虫232829

大多数以叶为食的甲虫的卵是可见的,容易获得,并且易于消毒。这是与类似研究相比,使用简单的试剂(75%乙醇)和更短的时间(8分钟)进行消毒的主要原因(例如,用75%乙醇和甲醛对臭虫 Plautia stali 进行40分钟的鸡蛋消毒以获得轴性昆虫;用1%活性氯和75%乙醇对 果蝇 进行6分钟的鸡蛋表面灭菌;用10%次氯酸钠对红棕榈象鼻铁线虫 进行 10分钟的鸡蛋表面灭菌解决方案)232936。对于具有微小卵的昆虫物种,需要优化消毒剂的使用和灭菌持续时间,因为治疗会显着影响结果。

在某些情况下,无菌人工日粮用于卵表面灭菌后的轴性昆虫饲养2937。然而,为昆虫开发合适的人工饲料是一个繁琐而费力的过程。饮食中的营养素广泛影响昆虫生理学(例如,发育时间,免疫力)和肠道微生物群635。因此,合格的昆虫人工日粮应含有与天然食物相似的营养成分,这是难以实现的,特别是对于食植物性昆虫。在这个协议中,我们用轴性宿主植物喂养昆虫,这克服了人工饮食的缺点。重要的是,与这里使用的杨树植物一样,通过种子表面杀菌或茎段消毒38从烟草,马铃薯,番茄,小麦和水稻等许多具有重要经济意义的作物中获得组织培养的幼苗也不难。值得注意的是,植物中的内生菌可能存在于组织培养的幼苗39 中,并且可以通过芽尖分生组织培养技术40消除。总之,该协议为维持无菌昆虫提供了一种新方法,这是促进昆虫 - 肠道细菌相互作用研究的便捷工具。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有利益冲突需要披露。

Acknowledgments

这项工作由中国国家自然科学基金(31971663)和CAST青年精英科学家赞助计划(2020QNRC001)资助。

Materials

Name Company Catalog Number Comments
0.22 µm syringe filters Millipore SLGP033RB
1 mg/mL NAA stock solution a. Prepare 0.1 M NaOH solution (dissolve 0.8 g NaOH in 200 mL of distilled water).
b. Add 0.2 g NAA in a 250 mL beaker, add little 0.1 M NaOH solution until NAA dissolved, and adjust the final volume to 200 mL with distilled water.
c. Filter the solution to remove bacteria with a 0.22 µm syringe filter and a 50 mL sterile syringe, subpackage the solution in 1.5 mL centrifuge tubes and restore at -20 °C.
1.5 mL microcentrifuge tubes Sangon Biotech F600620
10x PBS stock solution Biosharp Life Sciences BL302A
2 M KOH solution Dissolve 22.44 g KOH (molecular weight: 56.1) in 200 mL of distilled water and autoclave it for 20 min at 121 °C.
250 mL and 2,000 mL beakers Shubo sb16455
50 mL sterile syringes Jinta JT0125789
500 mL measuring cylinder Shubo sb1601
50x TAE stock solution a. Dissolve 242 g Tris and 18.612 g EDTA in 700 mL of distilled water.
b. Adjust pH to 7.8 with about 57.1 mL of acetic acid.
c. Adjust the final volume to 1,000 mL.
d. The stock solution was diluted to 1x TAE buffer when used.
75% ethanol Xingheda trade
α-naphthalene acetic acid (NAA) Solarbio Life Sciences 86-87-3
Absorbing paper 22.3 cm x 15.3 cm x 9 cm
Acetic acid Sinopharm Chemical Reagent Co. Ltd
Agar Coolaber 9002-18-0
Agarose Biowest 111860
Autoclave Panasonic MLS-3781L-PC
Bead-beating homogenizer Jing Xin XM-GTL64
DNA extraction kit MP Biomedicals 116560200
EDTA Saiguo Biotech 1340
Filter paper Jiaojie 70 mm diameter
Gel electrophoresis unit Bio-rad 164-5052
Gel Signal Green nucleic acid dye TsingKe TSJ003
Germ-free poplar seedlings Shan Xin poplar from Ludong University in Shandong Province
Golden Star Super PCR Master Mix (1.1×) TsingKe TSE101
Growth chamber Ruihua HP400GS-C
LB agar medium a. Dissolve 5 g tryptone, 5 g NaCl, 2.5 g yeast extract in 300 mL of distilled water.
b. Adjust the final volume to 500 mL, transfer the solution to a 1,000 mL conical flask, and add 7.5 g agar.
c. Autoclave the medium for 20 min at 121 °C.
Mini centrifuge DRAGONLAB D1008
MS basic medium Coolaber PM1121-50L M0245
MS solid medium for germ-free poplar seedling culture a. Dissolve 4.43 g MS basic medium powder and 30 g sucrose in 800 mL of distilled water.
b. Adjust the pH to about 5.8 with 2 M KOH by a pH meter.
c. Adjust the final volume to 1,000 mL, separate into two parts, transfer into two 1,000 mL conical flasks, and add 2.6 g agar per 500 mL.
d. Autoclave for 20 min at 121 °C.
NanoDrop 1000 spectrophotometer Thermo Fisher Scientific
Paintbrush 1 cm width, used to collect the eggs
Parafilm Bemis PM-996
PCR Thermal Cyclers Eppendorf 6331000076
Petri dishes Supin 90 mm diameter
pH meter METTLER TOLEDO FE20
Pipettes 0.2-2 µL Gilson ECS000699
Pipettes 100-1,000 µL Eppendorf 3120000267
Pipettes 20-200 µL Eppendorf 3120000259
Pipettes 2-20 µL Eppendorf 3120000232
Plant tissue culture container Chembase ZP21 240 mL
Plastic box 2.35 L
Potassium hydroxide (KOH) Sinopharm Chemical Reagent Co. Ltd
Primers for amplifying the bacterial 16S rRNA gene Sangon Biotech 27-F: 5’-ACGGATACCTTGTTACGAC-3’, 1492R: 5’-ACGGATACCTTGTTACGAC-3’
Sodium chloride (NaCl) Sinopharm Chemical Reagent Co. Ltd
Sodium hydroxide (NaOH) Sinopharm Chemical Reagent Co. Ltd
Steel balls 0.25 mm used to grind tissues
Stereomicroscope OLYMPUS SZ61
Sucrose Sinopharm Chemical Reagent Co. Ltd
Trans2K plus II DNA marker Transgene Biotech BM121-01
Tris base Biosharp Life Sciences 1115
Tryptone Thermo Fisher Scientific  LP0037
UV transilluminator Monad Biotech QuickGel 6100
Vortexer Scilogex MX-S
Willow branches Sha Lake Park, Wuhan, China
Willow leaf beetle Huazhong Agricultural University, Wuhan, China
Yeast extract Thermo Fisher Scientific LP0021

DOWNLOAD MATERIALS LIST

References

  1. Moran, N. A., Ochman, H., Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annual Review of Ecology, Evolution, and Systematics. 50 (1), 451-475 (2019).
  2. Warnecke, F., et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450 (7169), 560-565 (2007).
  3. Tokuda, G., et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America. 115 (51), 11996-12004 (2018).
  4. Wang, G. H., et al. Changes in microbiome confer multigenerational host resistance after sub-toxic pesticide exposure. Cell Host & Microbe. 27 (2), 213-224 (2020).
  5. Shin, S. C., et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 334 (6056), 670-674 (2011).
  6. Storelli, G., et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metabolism. 14 (3), 403-414 (2011).
  7. Salem, H., et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proceedings. Biological Sciences. 281 (1796), 20141838 (2014).
  8. Koch, H., Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America. 108 (48), 19288-19292 (2011).
  9. Cirimotich, C. M., et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 332 (6031), 855-858 (2011).
  10. Kaltenpoth, M., Gottler, W., Herzner, G., Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology. 15 (5), 475-479 (2005).
  11. Yuan, C., Xing, L., Wang, M., Hu, Z., Zou, Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. Insect Science. , (2021).
  12. Dillon, R. J., Vennard, C. T., Charnley, A. K. Pheromones - Exploitation of gut bacteria in the locust. Nature. 403 (6772), 851 (2000).
  13. Xu, L. T., Lou, Q. Z., Cheng, C. H., Lu, M., Sun, J. H. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microbial Ecology. 70 (4), 1012-1023 (2015).
  14. Schretter, C. E., et al. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature. 563 (7731), 402-406 (2018).
  15. Jia, Y., et al. Gut microbiome modulates Drosophila aggression through octopamine signaling. Nature Communications. 12 (1), 2698 (2021).
  16. Ma, M., et al. Metabolic and immunological effects of gut microbiota in leaf beetles at the local and systemic levels. Integrative Zoology. 16 (3), 313-323 (2021).
  17. Xu, L., et al. Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. Microbiome. 9 (1), 98 (2021).
  18. Xu, L., et al. Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. Journal of Pest Science. 92, 343-351 (2019).
  19. Berasategui, A., Shukla, S., Salem, H., Kaltenpoth, M. Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology. 100 (4), 1567-1577 (2016).
  20. Tikhe, C. V., Martin, T. M., Howells, A., Delatte, J., Husseneder, C. Assessment of genetically engineered Trabulsiella odontotermitis as a 'Trojan Horse' for paratransgenesis in termites. BMC Microbiology. 16 (1), 202 (2016).
  21. Wang, S., et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences of the United States of America. 109 (31), 12734-12739 (2012).
  22. Leonard, S. P., et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 367 (6477), 573-576 (2020).
  23. Kietz, C., Pollari, V., Meinander, A. Generating germ-free Drosophila to study gut-microbe interactions: protocol to rear Drosophila under axenic conditions. Current Protocols in Toxicology. 77 (1), 52 (2018).
  24. Brummel, T., Ching, A., Seroude, L., Simon, A. F., Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proceedings of the National Academy of Sciences of the United States of America. 101 (35), 12974-12979 (2004).
  25. Correa, M. A., Matusovsky, B., Brackney, D. E., Steven, B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nature Communications. 9 (1), 4464 (2018).
  26. Romoli, O., Schonbeck, J. C., Hapfelmeier, S., Gendrin, M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host-microbiota interactions. Nature Communications. 12 (1), 942 (2021).
  27. Berasategui, A., et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Molecular Ecology. 26 (15), 4099-4110 (2017).
  28. Lin, X. L., Kang, Z. W., Pan, Q. J., Liu, T. X. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae). Insect Science. 22 (5), 619-628 (2015).
  29. Muhammad, A., Habineza, P., Hou, Y., Shi, Z. Preparation of red palm weevil Rhynchophorus Ferrugineus (Olivier) (Coleoptera: Dryophthoridae) germ-free larvae for host-gut microbes interaction studies. Bio-protocol. 9 (24), 3456 (2019).
  30. Gelman, D. B., Bell, R. A., Liska, L. J., Hu, J. S. Artificial diets for rearing the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Science. 1, 7 (2001).
  31. Bengtson, D. A. A comprehensive program for the evaluation of artificial diets. Journal of the World Aquaculture Society. 24 (2), 285-293 (2007).
  32. Utsumi, S., Ando, Y., Ohgushi, T. Evolution of feeding preference in a leaf beetle: the importance of phenotypic plasticity of a host plant. Ecology Letters. 12 (9), 920-929 (2009).
  33. Ishihara, M., Ohgushi, T. Reproductive inactivity and prolonged developmental time induced by seasonal decline in host plant quality in the willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). Environmental Entomology. 35 (2), 524-530 (2006).
  34. Bright, M., Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nature Reviews: Microbiology. 8 (3), 218-230 (2010).
  35. Hassan, B., Siddiqui, J. A., Xu, Y. Vertically transmitted gut bacteria and nutrition influence the immunity and fitness of Bactrocera dorsalis larvae. Frontiers in Microbiology. 11, 596352 (2020).
  36. Hosokawa, T., et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nature Microbiology. 1, 15011 (2016).
  37. Habineza, P., et al. The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Frontiers in Microbiology. 10, 1212 (2019).
  38. Meilan, R., Ma, C. Poplar (Populus spp.). Methods in Molecular Biology. 344, Clifton, N.J. 143-151 (2006).
  39. Wani, Z. A., Ashraf, N., Mohiuddin, T., Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology. 99 (7), 2955-2965 (2015).
  40. Grout, B. W. Meristem-tip culture. Methods in Molecular Biology. 6, Clifton, N.J. 81-91 (1990).

Tags

生物学, 第176期,
用组织培养幼苗制备和饲养轴性昆虫用于叶甲虫的宿主 - 肠道微生物群相互作用研究
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Ma, M., Liu, P., Yu, J., Han, R.,More

Ma, M., Liu, P., Yu, J., Han, R., Xu, L. Preparing and Rearing Axenic Insects with Tissue Cultured Seedlings for Host-Gut Microbiota Interaction Studies of the Leaf Beetle. J. Vis. Exp. (176), e63195, doi:10.3791/63195 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter