The present protocol describes a standardized resection of brain tumors in rodents through a minimally invasive approach with an integrated tissue preservation system. This technique has implications for accurately mirroring the standard of care in rodent and other animal models.
The present protocol describes a standardized paradigm for rodent brain tumor resection and tissue preservation. In clinical practice, maximal tumor resection is the standard-of-care treatment for most brain tumors. However, most currently available preclinical brain tumor models either do not include resection, or utilize surgical resection models that are time-consuming and lead to significant postoperative morbidity, mortality, or experimental variability. In addition, performing resection in rodents can be daunting for several reasons, including a lack of clinically comparable surgical tools or protocols and the absence of an established platform for standardized tissue collection. This protocol highlights the use of a multi-functional, non-ablative resection device and an integrated tissue preservation system adapted from the clinical version of the device. The device applied in the present study combines tunable suction and a cylindrical blade at the aperture to precisely probe, cut, and suction tissue. The minimally invasive resection device performs its functions via the same burr hole used for the initial tumor implantation. This approach minimizes alterations to regional anatomy during biopsy or resection surgeries and reduces the risk of significant blood loss. These factors significantly reduced the operative time (<2 min/animal), improved postoperative animal survival, lower variability in experimental groups, and result in high viability of resected tissues and cells for future analyses. This process is facilitated by a blade speed of ~1,400 cycles/min, which allows the harvesting of tissues into a sterile closed system that can be filled with a physiologic solution of choice. Given the emerging importance of studying and accurately modeling the impact of surgery, preservation and rigorous comparative analysis of regionalized tumor resection specimens, and intra-cavity-delivered therapeutics, this unique protocol will expand opportunities to explore unanswered questions about perioperative management and therapeutic discovery for brain tumor patients.
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Despite recent advances in neurosurgery, targeted drug development, and radiation therapy, the 5-year survival rate for GBM patients is less than 5%, a statistic that has not significantly improved in over three decades1. Hence, there is a need for more effective treatment strategies.
To develop new therapies, it is becoming increasingly apparent that investigational protocols need to (1) utilize translatable preclinical models that accurately recapitulate the tumor heterogeneity and microenvironment, (2) mirror the standard therapeutic regimen used in patients with GBM, which currently includes surgery, radiotherapy, and chemotherapy, and (3) account for the difference between resected core and residual, invasive tumor tissues2,3,4,5. However, most of the currently available preclinical brain tumor models either do not implement surgical resection or utilize surgical resection models that are relatively time-consuming, leading to a significant amount of blood loss or lack standardization. Furthermore, performing resection of rodent brain tumors can be challenging due to a lack of clinically comparable surgical tools or protocols and the absence of an established platform6 for systematic tissue collection (Table 1).
The present protocol aims to describe a standardized paradigm for rodent brain tumor resection and tissue preservation using a multi-functional non-ablative minimally invasive resection system (MIRS) and an integrated tissue preservation system (TPS) (Figure 1). It is expected that this unique technique will provide a standardized platform that can be utilized in various studies in preclinical research for GBM and other types of brain tumor models. Researchers investigating therapeutic or diagnostic modalities for brain tumors can implement this protocol to achieve a standardized resection in their studies.
All animal studies were approved by the University of Maryland and the Johns Hopkins University Institutional Animal Care and Use Committee. C57BL/6 female mice, 6-8 weeks of age, were used for the present study. The mice were obtained from commercial sources (see Table of Materials). All Biosafety Level 2 (BSL-2) regulations were followed, including the usage of masks, gloves, and gowns.
1. Initial intracranial tumor implantation
2. Tumor resection using MIRS
3. Tissue collection via TPS
4. Growing cells in adherent culture
5. Growing cells in suspension culture (neurospheres)
6. Preparing cells for reimplantation
7. Histological analysis
Surgical resection using the MIRS results in a significant decrease in the tumor burden
In the group with a smaller tumor burden, the mean baseline bioluminescent signal was 5.5e+006 photons/s ± 0.2e+006 in the subgroup that underwent resection. Following resection, the mean bioluminescent signal decreased to 3.09e+006 photons/s ± 0.3e+006, (p <0.0001, Mann-Whitney test)9 (Figure 2). The bioluminescent signal increased in the following few days until the mice were euthanized. Similarly, in the group with a larger tumor burden, the mean baseline bioluminescent signal was 1.68e+007 photons/s ± 0.1e+007 in the subgroup that underwent resection. Following resection, the mean bioluminescent signal decreased to 5.19e+006 photons/s ± 0.2e+006, (p <0.0001, Mann-Whitney test)9. The bioluminescent signal increased in the following few days until the mice were euthanized.
Resection using the MIRS can be adjusted for the desired volume of resection
In pre-resection imaging of syngeneic CT2A tumors, the tumor can be generally identified as a heterogeneous mass at the inoculation site with disrupted parenchymal architecture and peritumoral edema and hemorrhage indicated by heterogeneous areas of T2-weighted (T2w) hypo- and hyper-intensity. The needle track used for stereotactic tumor cell injection can be identified on T2w MRI scans14.
The resection cavity can be identified on post-resection T2w MRI scans as a large round hypointense area at the tumor inoculation site (Figure 3). The resection procedure did not cause significant blood loss or disruption of the surrounding brain architecture. In some cases, fluid accumulated in the resection cavity. As shown in Figure 4, the resection volume significantly increased from 9.4 mm3 for one rotation of the cutting aperture to 23.2 mm3 for two rotations (p = 0.0117), allowing for adjustment of volume resection to optimize for a known tumor burden.
Tumor resection using the MIRS leads to a 7-day prolongation in the median survival of tumor-bearing mice without inducing any neurological signs
As shown in Figure 5, there was a prolongation in the survival of mice that underwent surgical resection in both groups with small (6 days) and large (7 days) tumors. In the group with a smaller tumor burden, the median survival of the control subgroup was 16 days, while the median survival of the subgroup that underwent resection was 22 days (p = 0.0044). Similarly, in the group with a larger tumor burden, the median survival of the control subgroup was 12 days, while the median survival of the subgroup that underwent resection was 19 days (p = 0.0043). In addition, none of the mice undergoing resection using the MIRS showed any sign of neurological injury after the procedure. This indicates that the MIRS can achieve safe resection.
The resected tissue using the MIRS has high in vitro and in vivo viability
Cells extracted from the resected tissue were filtered, quantified, and resuspended in the appropriate medium (Figure 6) before conducting in vitro or in vivo viability experiments. To examine the in vitro viability of the cells and to confirm resection of the tumor and not normal brain parenchyma, cells were grown in suspension culture. Neurosphere formation, an indicator for tumor initiation potential, occurred with minimal tissue processing post-resection. This suggested that the MIRS platform harvested well-dissociated tissue and had minimal impact on the health and viability of the resected tissue. Samples taken straight from the TPS to light microscopy appeared to be primarily in the form of single cells along with the presence of a few small chunks of tissue. Day 0 viability ranged from 30%-70% (this represents the viability after passing the sample through a 70 µm filter and before plating). The resection device has a cutting aperture that can rotate 360° on the axis of the resection probe, allowing for the resection of concentric tissue volumes. On average, 2-3 million cells can be harvested with one 360° turn of the cutting aperture, approximately 7 million cells with two turns, and a total of 12-14 million cells can be obtained with three 360° turns of the cutting aperture. After plating in suspension flasks containing serum-free complete stem cell medium, neurospheres were visible by light microscopy on Day 2 and by the naked eye by Day 7 (Figure 7).
To examine in vivo viability, extracted cells were intracranially implanted into naive C57BL/6 mice (n = 8 mice, 100,000 live cells/mouse). Tumor growth was confirmed using the in vivo imaging system. The tumor signal continued to increase until all animals were euthanized by day 14 post tumor implantation (median survival of 11 days).
The representative H&E tissue section (Figure 3B) contains a clear, circular resection cavity with a rim of blood products (deep pink), inflammation, and residual tumor cells (dark purple cells). Macroscopically, the residual tumor cells are mesenchymal in nature and infiltrative, exhibiting extensive perivascular invasion and proliferation. Microscopically, marked nuclear atypia and mitotic figures were identified. Tumor-associated macrophages were also identified around areas of infarcted tissue and microhemorrhages. Tissue architecture in the surrounding brain parenchyma did not appear to be disturbed.
Figure 1: MIRS system setup. (A) Minimally invasive resection system (MIRS) for brain tumor in rodent models with an integrated tissue preservation system. (B) Front panel of MIRS console. 1 = System Power, 2 = Foot Pedal, 3 = Prime Button, 4 = Aspiration, 5 = Aspiration Level Control Dial, 6 = Aspiration Level Indicator, 7 = Handpiece, 8 = Cutter Enable Button. (C) Rear panel of MIRS console. 1 = Power Cord Receptacle, 2 = Circuit Breaker, 3 = Nitrogen Supply Input. Please click here to view a larger version of this figure.
Figure 2: Changes in average tumor burden in mice with untreated tumors versus mice undergoing resection of tumors by MIRS. (A) Mice with small baseline tumor burden and (B) mice with large baseline tumor burden (p < 0.0001, SD ≤0.3e+006 in all groups at each time point and too small to be displayed on graph). Animals either succumbed to tumor burden or were euthanized. Please click here to view a larger version of this figure.
Figure 3: MRI and H&E analysis. (A) Pre- and post-resection T2-weighted brain MRI images and (B) a representative H&E-stained coronal brain section showing a clear, circular resection cavity with a rim of blood products (deep pink), inflammation, and residual tumor cells (dark purple cells). MRI images and H&E sections were obtained immediately after resection. Please click here to view a larger version of this figure.
Figure 4: Determination of tumor resection volume. The average volumes calculated from MRI images of resection cavities created with one vs. two rotations of the cutting aperture, n = 4 per group. p = 0.01, two-tailed T-test. Please click here to view a larger version of this figure.
Figure 5: Kaplan-Meier curves of mice with untreated tumors versus mice undergoing resection of tumors by MIRS. (A) Mice with small baseline tumor burden. (B) Mice with large baseline tumor burden. Please click here to view a larger version of this figure.
Figure 6: Viability test of the resected tumor cells. (A) Representative light microscopy images of tissue harvested with MIRS on Day 0 at 20x. (B) Kaplan-Meier curve describing survival of mice after intracranial implantation of cells harvested from resected tissue. Please click here to view a larger version of this figure.
Figure 7: Formation of neurospheres. Representative light microscopy images of neurospheres generated from resected tissue on Day 2 post-resection at (A) 20x and (B) 10x, and on day 7 post-resection at (C) 20x and (D) 10x. Please click here to view a larger version of this figure.
Minimally Invasive Resection System | Historical Resection | |||
Operative time and skills | Minimal operative time (<2 min for each animal). Minimal skills needed. | Surgical time is not standardized and surgical experience with small animals and microsurgery is beneficial. | ||
Blood loss | Minimal | Unpredictable | ||
Standardized volume of resection | Volume of resection determined/adjusted by the number of rotations of the resection tool | Volume varies greatly among subjects |
Table 1: Comparison between the minimally invasive resection system (MIRS) and historical surgical resection models.
Tumor resection is a cornerstone of neurosurgical oncology treatment plans for both low-grade and high-grade brain tumors. Cytoreduction and debulking of the tumor correlate with improved neurological function and overall survival in patients with brain tumors1,2,5,6. Although protocols for surgical resection have been previously described in rodent models, these protocols have suffered from several limitations that can confound the generated results and the overall translatability of the preclinical model. For instance, previously reported surgical resection protocols have included a craniotomy with 3-4 small burr holes to create a bone flap and then skillful distinction and differentiation of the tumor's coloration and consistency compared to normal brain tissue6. These protocols are time-consuming and require the research personnel to have advanced skills in utilizing the surgical microscope, handling surgical instruments, identifying the tumor borders concerning the surrounding normal brain tissue, and achieving adequate homeostasis. Such procedures often lead to significant blood loss and animal death. In addition, it can be challenging to achieve standardized resection with comparable volumes of tumor tissue resected across different animals in the same experiment. This continuity and uniformity becomes more challenging with multiple personnel performing the procedure.
In contrast, the MIRS protocol described here removes these limitations (Table 1). The present protocol requires a minimally invasive approach through the same burr hole used for initial tumor implantation. As detailed in the protocol section, the resection tool can be installed on a stereotactic frame that allows for accurate insertion of the cannula into the tumor cavity. The speed of the blade and the number of resection cycles performed can be easily adjusted through a handpiece used by the research personnel to control the volume of tumor resected in a standardized fashion without causing a significant amount of blood loss.
As noted in the results, the mice that underwent resection with the MIRS device demonstrated prolonged survival compared to the cohort of mice with unresected tumors. This, along with the data, shows that tumor burden was significantly reduced in the resected group compared to the unresected control group, indicating that the MIRS device effectively debulks the tumor with minimal disturbance to surrounding healthy brain tissues. Further, in the days following resection, the tumor burden progressed steadily due to the presence of a residual tumor and the infiltrative nature of the CT-2A tumor cell line. The MIRS model can thus replicate the debulking process of infiltrative tumor types, which can be followed with chemotherapeutics or radiation therapy to more closely mirror the treatment regimen in human brain tumor treatment protocols15,16,17.
As is the case with any suction device, clogging of the aspiration tubing can be one of the limitations of the MIRS system. This can occur due to the accumulation of dry tissue or blood during or after using the machine. To avoid this, immediately at the end of each session of resections, purging the handpiece cannula is recommended by flushing with chilled media alternating with air to "push" all of the resected tissue to the collection canister, followed by flushing with 3% H2O2. This will capture all of the tissue acquired during the resection and ensure none remains in the cannula or tubing. Furthermore, if the system is not aspirating/cutting, this can be because the handpiece is not plugged in, the resection cannula cutter is not turned on, the aspiration line from the console is not connected to the canister, the canister lid is not tight, or the foot pedal is not plugged in.
In addition, while we have shown that the MIRS can be used for effective and standardized resection with high in vitro and in vivo viability of the resected tissue, future studies are encouraged to further investigate other facets of implementing such systems in brain tumor research. These include examining the impact of the resection process on the molecular and cellular components of the tumor mass and the tumor microenvironment. In addition, studies are needed to confirm that the resected tissue using the MIRS device recapitulates the parental tumor15.
In conclusion, a protocol of a minimally invasive approach is described for standardized surgical resection in a rodent brain tumor model that is coupled with an integrated and automated tissue preservation system. This protocol paves the path toward establishing highly translational and predictive preclinical brain tumor research models. Future applications of this protocol can potentially include preclinical studies investigating different therapeutic or diagnostic modalities for brain tumors which can implement this protocol to achieve a standardized resection.
The authors have nothing to disclose.
1 mL syringes | BD | 309628 | |
15 mL conical tubes | Corning | 430052 | |
200 proof ethanol | PharmCo | 111000200 | |
5 mL pipettes | CoStar | 4487 | |
70 micron filter | Fisher | 08-771-2 | |
Accutase | Millipore Sigma | SIG-SCR005 | |
Anased (Xylazine injection, 100 mg/mL) | Covetrus | 33198 | |
Anesthesia System | Patterson Scientific | 78935903 | |
Anesthesic Gas Waste Container | Patterson Scientific | 78909457 | |
Bench protector underpad | Covidien | 10328 | |
C57Bl/6, 6-8 week old mice | Charles River Laboratories | Strain Code 027 | |
ChroMini Pro | Moser | Type 1591-Q | |
Collagenase-Dispase | Roche | #10269638001 | |
Countess II Automated Cell Counter | Thermo Fisher | ||
Countess II FL Hemacytometer | Thermo Fisher | A25750 | |
Debris Removal Solution | Miltenyi Biotech | #130-109-398 | |
D-Luciferin | Goldbio | LUCK-1G | |
DMEM F12 media | Corning | 10-090-CV | |
DMEM media | Corning | 10-013-CV | |
DNAse I | Sigma Aldrich | #10104159001 | |
Eppendorf tubes | Posi-Click | 1149K01 | |
Euthanasia solution | Henry Schein | 71073 | |
FBS | Millipore Sigma | F4135 | |
Fetal Bovine Serum | Thermo Fisher | 10437-028 | |
Formalin | Invitrogen | INV-28906 | |
Gauze | Henry Schein | 101-4336 | |
hEGF | PeproTech EC | 100-15 | |
Heparin | Sigma | H-3149 | |
hFGF-b | PeproTech EC | 1001-18B | |
Induction Chamber | Patterson Scientific | 78933388 | |
Isoflurane | Covetrus | 11695-6777-2 | |
Isoflurane Vaporizer | Patterson Scientific | 78916954 | |
Ketamine | Covetrus | 11695-0703-1 | |
Kopf Stereotactic frame | Kopf Instruments | 5001 | |
Lightfield Microscope | BioTek | Cytation 5 | |
Microinjection Unit | Kopf | 5001 | |
Micromotor drill | Foredom | F210418 | |
MRI system | Bruker | 7T Biospec Avance III MRI Scanner | |
NICO Myriad System | NICO Corporation | ||
Ophthalmic ointment | Puralube vet ointment | ||
Papain | Sigma Aldrich | #P4762 | |
PBS | Invitrogen | #14190250 | |
PenStrep | Millipore Sigma | N1638 | |
Percoll solution | Sigma Aldrich | #P4937 | |
Pipette controller | Falcon | A07260 | |
Povidone-iodine solution | Aplicare | 52380-1905-08 | |
Progesterone | Sigma | P-8783 | |
Putrescine | Sigma | P-5780 | |
RPMI Media | Invitrogen | INV-72400120 | |
Scalpel blade | Covetrus | 7319 | |
Scalpel handle | Fine Science Tools | 91003-12 | |
Skin marker | Time Out | D538,851 | |
Staple remover | MikRon | ACR9MM | |
Stapler | MikRon | ACA9MM | |
Staples | Clay Adams | 427631 | |
Stereotactic Frame | Kopf Instruments | 5000 | |
Sucrose | Sigma Aldrich | S9378 | |
Suture, vicryl 4-0 | Ethicon | J494H | |
T-75 culture flask | Sarstedt | 83-3911-002 | |
TheraPEAKTM ACK Lysing Buffer (1x) | Lonza | BP10-548E | |
Trypsin-EDTA | Corning | MDT-25-053-CI |