Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education
Basic Methods in Cellular and Molecular Biology

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

 

Overview

Clonagem molecular é um conjunto de métodos, que são usados para inserir DNA recombinante em um vetor - um portador de moléculas de DNA que replicará fragmentos de DNA recombinantes em organismos hospedeiros. O fragmento de DNA, que pode ser um gene, pode ser isolado de um espécime procariótico ou eucariótico. Após o isolamento do fragmento de interesse, ou inserir, tanto o vetor quanto a inserção devem ser cortados com enzimas de restrição e purificados. As peças purificadas são unidas através de uma técnica chamada ligadura. A enzima que catalisa a reação de ligadura é conhecida como ligadura.

Este vídeo explica os principais métodos que são combinados, em conjunto, para compor o procedimento global de clonagem molecular. Aspectos críticos da clonagem molecular são discutidos, como a necessidade de estratégia de clonagem molecular e como acompanhar colônias bacterianas transformadas. Também são mencionadas etapas de verificação, como a verificação do plasmídeo purificado para a presença de inserção com digestões de restrições e sequenciamento.

Procedure

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

Clonagem molecular é um conjunto de técnicas usadas para inserir DNA recombinante de uma fonte procariótica ou eucariótica em um veículo replicante, como plasmídeos ou vetores virais. Clonagem refere-se a fazer numerosas cópias de um fragmento de DNA de interesse, como um gene. Neste vídeo você aprenderá sobre as diferentes etapas da clonagem molecular, como configurar o procedimento e diferentes aplicações dessa técnica.

Pelo menos duas moléculas importantes de DNA são necessárias antes da clonagem começar. Primeiro, e o mais importante, você precisa do fragmento de DNA que você vai clonar, também conhecido como a inserção. Pode vir de um procariote, eucariote, um organismo extinto, ou pode ser criado artificialmente em laboratório. Usando clonagem molecular podemos aprender mais sobre a função de um determinado gene.

Segundo, você precisa de um vetor. Um vetor é dna plasmídeo usado como uma ferramenta na biologia molecular para fazer mais cópias ou produzir uma proteína a partir de um determinado gene. Plasmídeos são um exemplo de um vetor, e são cromossômicos circulares, extra, DNA que é replicado por bactérias.

Um plasmídeo normalmente tem um site de clonagem múltipla ou MCS, esta área contém locais de reconhecimento para diferentes endonucleases de restrição também conhecidos como enzimas de restrição. Diferentes inserções podem ser incorporadas ao plasmídeo por uma técnica chamada ligadura. O vetor plasmídeo também contém uma origem de replicação, que permite que ele seja replicado em bactérias. Além disso, o plasmid tem um gene antibiótico. Se as bactérias incorporarem o plasmídeo, ele sobreviverá na mídia que contém o antibiótico. Isso permite a seleção de bactérias que foram transformadas com sucesso.

A inserção e vetor são clonados em um organismo de células hospedeiras, o mais comum na clonagem molecular é o E. coli. E. coli cresce rapidamente, está amplamente disponível e tem inúmeros vetores de clonagem diferentes produzidos comercialmente. Eucariotes, como, levedura também pode ser usado como organismos hospedeiros para vetores.

O primeiro passo do procedimento geral de clonagem molecular é obter a inserção desejada, que pode ser derivada do DNA ou mRNA de qualquer tipo de célula. O vetor ideal e seu organismo hospedeiro são então escolhidos com base no tipo de inserção e o que será feito com ele. Uma reação em cadeia de polimerase ou método baseado em PCR é frequentemente usado para replicar a inserção.

Em seguida, usando uma série de reações enzimáticas, a inserção e digestão são unidas e introduzidas no organismo hospedeiro para replicação em massa. Vetores replicados são purificados de bactérias, e após a digestão de restrição, analisada em um gel. Fragmentos purificados em gel são posteriormente enviados para sequenciamento para verificar se o inset é o fragmento de DNA desejado.

Vamos dar uma olhada mais detalhada em como a clonagem molecular é conduzida. Antes de começar, você vai querer planejar sua estratégia de clonagem, antes de fazer qualquer tentativa de clonagem no banco. Por exemplo, qualquer vetor plasmídeo, fornecerá um número finito de sites de restrição para incorporar a inserção através do site de clonagem múltipla. Você precisará escolher sites de restrição que não são encontrados em sua inserção para que você não o aperte. Você pode ficar com uma situação em que você é forçado a se juntar a um fragmento final contundente com um que tem uma saliência. Se assim for, então usar o fragmento de klenow para configurar uma ligadura final sem cortes pode ser a única opção para obter a inserção no vetor desejado. Entender as várias ferramentas de clonagem molecular à sua disposição, bem como chegar a uma estratégia cuidadosa antes de começar a clonagem pode ser um imenso poupador de tempo.

A fonte de DNA para clonagem molecular pode ser isolada de quase qualquer tipo de amostra celular ou tecidual através de técnicas simples de extração. Uma vez isolado, o PCR pode ser usado para amplificar a pastilha.

Uma vez que a inserção é amplificada, tanto ela quanto o vetor são digeridos por enzimas de restrição, também conhecidas como endonucleases de restrição.

Uma vez digerido, a inserção e vetor podem ser executados em gel e purificados por um processo chamado purificação de gel. Com relação ao vetor, este passo ajudará a purificar plasmídeo linearizado de plasmídeo não cortado, que tende a aparecer como uma mancha de alto peso molecular em um gel.

Após o gel purificar os digestos, a inserção é ligada ou juntada ao plasmídeo, através de uma enzima chamada ligadura de DNA.

De um modo geral, é sempre uma boa ideia configurar ligaduras, de modo que a razão de inserção para vetor é de 3 para 1, o que garante que apenas uma pequena quantidade de vetor se auto-ligante. Uma vez que a ligadura tenha sido configurada no gelo, ela é incubada entre 14-25°C de 1 hora a noite.

Em seguida, a transformação é realizada para introduzir o vetor plasmídeo no hospedeiro que irá replicá-lo.

Após a transformação, as bactérias são banhadas em placas de ágar com antibiótico e incubadas durante a noite a 37°C. Como o plasimid contém um gene de resistência a antibióticos, a transformação bem sucedida produzirá colônias bacterianas quando cultivadas em placas de ágar na presença de antibióticos. Colônias individuais podem então ser colhidas da placa transformada, colocadas em mídia de crescimento líquido em tubos numerados, e colocadas em uma incubadora de agitação para expansão. Um pequeno volume de cultura líquida é adicionado a uma placa de ágar numerada, enquanto o resto da cultura passa para a purificação plasmida. O esquema de numeração que denota a identidade das colônias bacterianas das quais os plasmídeos serão eventualmente purificados é mantido durante todo o processo de purificação plasmídeo.

Uma amostra de plasmídeo purificado é então cortada com enzimas de restrição. O digesto é então carregado e executado no gel a fim de verificar a presença de inserção, que verificará se a colônia bacteriana foi transformada com um plasmídeo contendo uma inserção e não plasmídeo auto-ligado. As bactérias verificadas foram transformadas com um plasmídeo contendo inserção, são expandidas para maior purificação plasmida. O sequenciamento é usado como uma etapa final de verificação para confirmar que seu gene de interesse foi clonado.

A clonagem molecular pode ser usada para um número quase ilimitado de aplicações. Por exemplo, quando um modelo de mRNA é transcrito invertido para formar cDNA, ou DNA complementar, por uma enzima chamada transcriptase reversa e, em seguida, PCR é usado para amplificar o cDNA, a clonagem molecular pode ser usada para criar uma biblioteca cDNA – uma biblioteca de todos os genes expressos por um determinado tipo de célula.

A clonagem molecular também pode ser empregada para tirar uma série de genes, ou aglomerados genéticos de uma cepa bacteriana, reorganizá-los em plasmídeos que são transformados em outra cepa, de modo que uma via biossintética inteira pode ser recriada para produzir uma molécula complexa.

Através da clonagem molecular, uma biblioteca mutante pode ser gerada expressando um plasmídeo alvo em uma cepa bacteriana especial que usa uma polimerase propensa a erros quando cultivada a determinadas temperaturas. As mutações podem ser caracterizadas pelo sequenciamento. Bactérias transformadas com genes mutantes podem então ser testadas com diferentes drogas ou produtos químicos para ver quais colônias bacterianas evoluíram para ter resistência a medicamentos.

Graças à clonagem molecular, os genes repórteres podem ser incorporados em plasmídeos de DNA, um gene repórter comum é proteína fluorescente verde ou GFP, que emite uma fluorescência verde quando exposto à luz UV. Um gene repórter também pode ser inserido em um alfavírus para mostrar infecção em mosquitos e transmissibilidade nas células.

Você acabou de assistir vídeo joves sobre clonagem molecular. Agora você deve entender como a clonagem molecular funciona e como a técnica pode ser usada em biologia molecular. Como sempre, obrigado por assistir!

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Nenhum conflito de interesses declarado.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter