-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Cancer Research
Natural Killer (NK) and CAR-NK Cell Expansion Method using Membrane Bound-IL-21-Modified B Cell Line
Natural Killer (NK) and CAR-NK Cell Expansion Method using Membrane Bound-IL-21-Modified B Cell Line
JoVE Journal
Cancer Research
This content is Free Access.
JoVE Journal Cancer Research
Natural Killer (NK) and CAR-NK Cell Expansion Method using Membrane Bound-IL-21-Modified B Cell Line

Natural Killer (NK) and CAR-NK Cell Expansion Method using Membrane Bound-IL-21-Modified B Cell Line

Full Text
6,042 Views
11:02 min
February 8, 2022

DOI: 10.3791/62336-v

Minh Ma1,2, Saiaditya Badeti1, James K. Kim1, Dongfang Liu1,3

1Department of Pathology, Immunology and Laboratory Medicine,Rutgers-New Jersey Medical School, 2Department of Microbiology, Biochemistry & Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School,Rutgers University, 3Center for Immunity and Inflammation, New Jersey Medical School,Rutgers-The State University of New Jersey

Summary

Here, we present a method to expand peripheral blood natural killer (PBNK), NK cells from liver tissues, and chimeric antigen receptor (CAR)-NK cells derived from peripheral blood mononuclear cells (PBMCs) or cord blood (CB). This protocol demonstrates the expansion of NK and CAR-NK cells using 221-mIL-21 feeder cells in addition to the optimized purity of expanded NK cells.

Transcript

This protocol can significantly improve the expansion of functional, non-exhaustive, memory-like NK cells ex vivo compared to other feeder cells based on expansion system. This is a simpler method compared to other protocols using feeder cells in which we skip the NK cell isolation step prior to NK cell expansion. This protocol can provide a sufficient number of the NK cell and CAR-NK for immunotherapy.

This technique is highly reproducible. However, using fresh, new starting materials and taking care not to disturb the NK cells during the first few days of expansion is crucial. Begin by identifying and sectioning the viable tissue areas using sterile surgical equipment to obtain lymphocytes.

Then, place the sectioned tissues in 30 milliliters of HBSS without calcium or magnesium and keep the tissue on ice until ready for isolation. Working inside a biosafety cabinet, mince the tissue into less than 0.5 centimeter cubes with sterile razor blades and forceps. Place the minced tissue pieces, not more than 4 grams, in the tissue dissociator tubes and add 10 milliliters of collagenase IV to the tissue pieces.

To mince the tissue thoroughly, treat the tissue dissociator tubes into a tissue dissociator at 37 degrees Celsius. After removing the tubes from the tissue dissociator, triturate the minced tissue through a 40-micron nylon cell strainer using the backend of a 5 milliliter syringe. Discard the large undigested fragments.

Spin down the collected eluent at 400G for 5 minutes at room temperature and aspirate the supernatant before resuspending the cell pellets in 30%polyvinylpyrrolidone-coated silica to remove the fat cells. Spin down the cells as described before resuspending the cell pellet in 9 milliliters of R-10 media. To separate lymphocytes from red blood cells and polymorphonuclear cells, carefully layer the cell suspension over 4 milliliters of Ficoll or lymphocyte separation media.

Separate the layers by centrifuging at 400G for 23 minutes at room temperature with the acceleration and brakes off. Then, carefully decant the upper-medium layer and harvest the interphase containing tissue-infiltrating lymphocytes. Rinse the cells with 10 milliliters of media and proceed for analysis or primary natural killer, or NK, cells expansion protocol.

Wash the peripheral blood mononuclear cells, or PBMCs, and 100 gamma-irradiated 221-mIL-21 cells separately by centrifugation at 400G for 5 minutes with 10 milliliters of R-10 media. After centrifugation, save 1 x 10 to the 6th PBMCs for flow cytometry and mix 5 x 10 to the 6th PBMCs with 10 x 10 to the 6th 100 gamma-irradiated 221-mIL-21 cells in a special 6-well plate. Add 30 milliliters of R-10 media supplemented with human interleukin-2 and human interleukin-15 to the same 6-well plate and incubate the plate at 37 degrees Celsius with 5%carbon dioxide, with replacing the media every 3 to 4 days.

While in incubation, record the total peripheral blood natural killer, or PBNK, cell number viability and perform flow cytometry every 3 to 4 days to calculate the NK cell expansion rate. Add 1.8 x 10 to the 6th 293T cells in 11 milliliters of the D-10 media per treated 100 millimeter plate and incubate 293T cells at 37 degrees Celsius with 5%carbon dioxide. In a 1.70 milliliter tube, mix 470 microliters of the reduced serum media with 30 microliters of the transfection reagent.

In a separate 1.70 milliliter tube, add 2.5 micrograms of pRDF plasmid, 3.75 micrograms of Pegpam3 plasmid, and 2.5 micrograms of CAR construct in SFG vector into the reduced serum media to make the final volume of 500 microliters. Mix the contents of the tube with the 1.70 milliliter tube prepared earlier in a dropwise manner. After 15 minutes of incubation at room temperature, add 1 milliliter of the mixture from the tube to the 293T cell plate in a dropwise manner and place the plate at 37 degrees Celsius with 5%carbon dioxide for 48 to 72 hours.

Dilute the retronectin protein with PBS to a final concentration of 50 to 100 micrograms per milliliter. Add 500 microliters of the diluted retronectin into each well of an untreated 24-well plate. Then, seal the plate using parafilm and incubate the plate at 4 degrees Celsius overnight.

The next day, centrifuge the retronectin plate at 2, 103G for 30 minutes at 4 degrees Celsius and discard the supernatant. After blocking each well of the 24-well plate with 1 milliliter of R-10 medium, incubate the plate at 37 degrees Celsius with 5%carbon dioxide for 1 hour. Filter the previously-transfected 293T cells using a 0.45 micron filter to collect the retrovirus supernatant.

Aliquot 2 milliliters of the filtered retrovirus supernatant into each well of the 24-well retronectin plate. Centrifuge the 24-well retronectin plate at 2, 103G for 2 hours into a pre-warmed centrifuge at 32 degrees Celsius. While the plates are being centrifuged, collect the expanded PBNK cells from Day 0 and count the cells using Trypan Blue.

Dilute the expanded PBNK cells with R-10 media supplemented with interleukin-2 and interleukin-15 to the concentration of 2.5 x 10 to the 5th to 5 x 10 to the 5th cells per milliliter. After centrifugation of the 24-well retronectin plate, partially aspirate the retrovirus supernatant from each well. Then, add 2 milliliters of the diluted expanded PBNK cells to each well.

Centrifuge the plate at 600G for 10 minutes at 32 degrees Celsius before incubating the plate at 37 degrees Celsius with 5%carbon dioxide for 48 to 72 hours. Transfer the cells from the 24-well plate into a 50 milliliter centrifuge tube to centrifuge the tube at 400G for 5 minutes. After resuspending the pellet with 1 milliliter of R-10 media, transfer the resuspended cells to a special 6-well plate containing 30 milliliters of R-10 media supplemented with interleukin-2 and interleukin-15.

Incubate the special 6-well plate at 37 degrees Celsius and 5%carbon dioxide with refreshing media and calculate the NK cell expansion rate every 3 to 4 days. The PBNK cells expanded by 221-mIL-21 were shown to expand nearly 5 x 10 to the 4th folds. And the NK cell purity was maintained at around 85%throughout the 21-day expansion.

Prior to the expansion, the robustness of the 221-mIL-21 expansion system was examined by staining PBMCs for anti-CD56 and anti-CD3, which showed a cell purity of 7.09%for NK cells and a high percentage of T cells. On Day 4 of PBMCs and 221-mIL-21 coculture, the NK purity was checked before CAR-NK transduction. The CAR-NK cells stained for anti-CD56, anti-CD3, and anti-human-IgG showed a high NK cell population on Day 7 and a high CAR transduction efficiency of approximately 70%was observed.

On the 18th day, the CAR expression in various subsets was checked with flow cytometry. Following NK cell expansion, cells can be used for in-vitro functional assays or for in-vivo experiments. Researcher can use this protocol to expand NK and CAR-NK for patients with functional NK deficiency as well as other species, such as dog.

Explore More Videos

Natural Killer CellsCAR-NK CellsIL-21Cell Expansion MethodImmunotherapyEx VivoLymphocytesCollagenase IVFicollPBMCsLymphocyte SeparationNon-exhaustive Memory-like NK Cells

Related Videos

Expansion, Purification, and Functional Assessment of Human Peripheral Blood NK Cells

10:44

Expansion, Purification, and Functional Assessment of Human Peripheral Blood NK Cells

Related Videos

49K Views

Artificial Antigen Presenting Cell (aAPC) Mediated Activation and Expansion of Natural Killer T Cells

13:18

Artificial Antigen Presenting Cell (aAPC) Mediated Activation and Expansion of Natural Killer T Cells

Related Videos

18.4K Views

Natural Killer Cell Isolation from Liver Tissue for Selective Expansion

04:17

Natural Killer Cell Isolation from Liver Tissue for Selective Expansion

Related Videos

620 Views

Ex Vivo Expansion of Natural Killer Cells from Peripheral Blood Mononuclear Cells

03:14

Ex Vivo Expansion of Natural Killer Cells from Peripheral Blood Mononuclear Cells

Related Videos

791 Views

An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen

09:01

An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen

Related Videos

12.3K Views

Flow Cytometry-based Assay for the Monitoring of NK Cell Functions

08:17

Flow Cytometry-based Assay for the Monitoring of NK Cell Functions

Related Videos

21.6K Views

Isolation and Expansion of Cytotoxic Cytokine-induced Killer T Cells for Cancer Treatment

11:11

Isolation and Expansion of Cytotoxic Cytokine-induced Killer T Cells for Cancer Treatment

Related Videos

11.2K Views

Purification and Expansion of Mouse Invariant Natural Killer T Cells for in vitro and in vivo Studies

08:37

Purification and Expansion of Mouse Invariant Natural Killer T Cells for in vitro and in vivo Studies

Related Videos

4.5K Views

Generation of Natural Killer Cells from Human Expanded Potential Stem Cells

06:53

Generation of Natural Killer Cells from Human Expanded Potential Stem Cells

Related Videos

3.4K Views

Engineering Chimeric Antigen Receptor-Natural Killer Cells Targeting Fungal Infections Using the Non-viral Sleeping Beauty Transposon System

08:29

Engineering Chimeric Antigen Receptor-Natural Killer Cells Targeting Fungal Infections Using the Non-viral Sleeping Beauty Transposon System

Related Videos

1.1K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code