Erken Viral Giriş Tespiti için Tahliller ve Antiviral Bileşiklerin Değerlendirilmesi

Immunology and Infection

Your institution must subscribe to JoVE's Immunology and Infection section to access this content.

Fill out the form below to receive a free trial or learn more about access:

Welcome!

Enter your email below to get your free 10 minute trial to JoVE!





We use/store this info to ensure you have proper access and that your account is secure. We may use this info to send you notifications about your account, your institutional access, and/or other related products. To learn more about our GDPR policies click here.

If you want more info regarding data storage, please contact gdpr@jove.com.

 

Cite this Article

Copy Citation | Download Citations

Tai, C. J., Li, C. L., Tai, C. J., Wang, C. K., Lin, L. T. Early Viral Entry Assays for the Identification and Evaluation of Antiviral Compounds. J. Vis. Exp. (104), e53124, doi:10.3791/53124 (2015).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

Protocol

Not: hücre kültürü ve virüs enfeksiyonu ile ilgili tüm prosedürler işlenen örneklerin biyogüvenlik düzeyi için uygun olan sertifikalı biyogüvenlik davlumbaz yapılan emin olun. Protokolleri tarif edilmesi amacıyla, Gaussia lusiferaz raportör-etiketli HCV model virüs 32 olarak kullanılır. Temsili sonuçlar bağlamında bileşikler chebulagic asit (chlA) ve punicalagin (PUG) 31 adım erken viral girişi sırasında, hücre yüzeyi glikozaminoglikanların viral glikoprotein etkileşimleri hedef aday antiviral olarak kullanılır. Birçok virüs 30,31,33,34 girişi ile müdahale edilmesi bilinmektedir Heparin, bu bağlamda, bir pozitif kontrol tedavisi olarak kullanılır. Temel viroloji teknikleri arka plan, virüslerinin üretilmesi ile, virüs titresinin belirlenmesi ve plak oluşturucu birim enfeksiyöz doz (PFU) ekspresyonu için, oluşturucu birim (FFU) ya da enfeksiyon (MOI) çokluğu odak okuyucu yeniden olduğu35 referans yönlendirildiler. Önceki örnekler ve temsili sonuçlarda görüldüğü virüs için kullanılan optimum koşullar için okuyucu Tablo 1, Şekil 1A ve Şekil 2A'da yer alan referanslar 30-32,36-39 ve detayları adlandırılır.

1. Hücre Kültürü, Bileşik Hazırlama ve Bileşim Sitotoksisite

  1. Virüs enfeksiyonu sistemi için ilgili hücre hattı büyütün (Tablo 1) analiz edilecek. HCV için, Dulbecco değiştirilmiş Eagle ortamı,% 10 fetal sığır serumu (FBS) ile desteklenmiş (DMEM), 200 U / ml penisilin G, 200 ug / ml streptomisin içinde Huh-7,5 hücrelerin büyümesine ve 0,5 ug / ml amfoterisin B
  2. Kendi çözücüler kullanılarak Test bileşikleri ve kontroller hazırlayın: örneğin, chlA ve dimetil sülfoksit içinde PUG (DMSO) çözülür; Steril çifte damıtılmış su içinde heparin hazırlar. Sonraki tüm seyreltilerde için, kültür ortamı kullanın.
    Not: Son concentTest bileşiği, tedavi DMSO oranı deneylerde% 1'den az olduğu; % 1 DMSO karşılaştırma deneylerinde, bir negatif kontrol tedavisi olarak dahil edilir.
  3. Örneğin XTT olarak reaktif belirleyici hücre canlılığı ile viral enfeksiyon için hücreler üzerinde test bileşiklerinin (örneğin, chlA ve PUG) sitotoksisitesini belirlemek (2,3-bis [2-metoksi-4-nitro-5-sülfofenil] -5-fenilamino) -karbonil] -2H-tetrazolyum hidroksit):
    1. HCV için, bir 96-çukurlu plaka içinde Huh-7,5 hücreler (çukur başına 1 x 10 4 hücreleri) tohum ve bir tek tabaka elde etmek üzere% 5 CO2 inkübatöründe O / N 37 ° C'de inkübe edin.
    2. Üç kopya halinde kültür çukurlarına DMSO kontrolü (% 1) ya da test bileşimleri chlA ve PUG artan konsantrasyonlarda (ör., 0, 10, 50, 100 ve 500 uM) uygulayın.
    3. Daha sonra, 72 saat süre ile 37 ° C'de inkübe plaka içinde orta atmak ve iki kez fosfat tamponlu tuzlu su içinde 200 ul (PBS) hücreleri yıkayın.
    4. Assayin 100 ul ekleg her oyuğa XTT tabanlı in vitro toksisite deneyi kiti çözeltisi ve XTT formazan üretimini sağlamak için, başka bir 3 saat daha 37 ° C'de inkübe edin.
    5. 492 nm dalga boyunda bir test bir mikroplaka okuyucu ve 690 nm'lik bir referans dalga boyu ile absorbans belirler.
    6. . Test bileşiklerinin absorbans ve solvent kontrolü bakın (ex% 1 DMSO 'gibi'% 100 'At' × gibi / hücre canlılığı (%) At = ve aşağıdaki formül kullanılarak hücrelerin hayatta yüzdesini hesaplayın sırasıyla) tedaviler. Üreticinin protokolüne göre olan, GraphPad Prizmasında gibi bir analitik yazılım test bileşikleri% 50 hücresel sitotoksisite (CC 50) konsantrasyonunu belirler.

Viral Enfeksiyon 2. Saati

Not: viral enfeksiyonun okuma kullanılan virüs sistemine bağlıdır ve plak tahlilleri ya da mea gibi yöntemleri içerebilirmuhabir-etiketli virüslerden muhabiri sinyalleri suring. Lusiferaz raportör etkinliği göre muhabir-HCV enfeksiyonunu belirlemek için bir yöntem aşağıda tarif edilmektedir.

  1. Enfekte kuyulardan süpernatantlar toplayın ve 4 ° C'de 5 dakika boyunca bir mikrosantrifüj içinde 17,000 xg'de belirler.
  2. Gaussia lusiferaz deney kiti lusiferaz alt-tabaka, 50 ul test süpernatan 20 ul karıştırın ve, imalatçı firmanın talimatlarına göre, bir lüminometre ile ölçün.
  3. Üreticinin protokolüne göre, GraphPad Prism yazılımı algoritmaları kullanarak, HCV enfeksiyonuna karşı test bileşiklerinin% 50 etkili konsantrasyon (EC 50), viral inhibisyon (%) belirlemek için, nispi ışık birimleri (RLU) log 10 olarak, HCV enfektivitesini ifade edebilir ve hesaplar.

3. Viral İnaktivasyonu Testi

Not: Çeşitli virüsler için kuluçka süresi örnek olarak ve viral dozunŞekil 1A listelenen yeniden. Virüsün yüksek konsantrasyonlar da MOI / PFU artırarak test edilebilir.

  1. Tohum Huh-7,5, 96-çukurlu plaka içindeki hücreler (oyuk başına 1 x 10 4 hücreler) ve bir tek tabaka elde etmek üzere bir% 5 CO2 inkübatöründe 37 ° C'de O / N inkübe edin.
  2. Test bileşikleri veya kontroller inkübe (nihai konsantrasyonlar: chlA = 50 uM; PUG = 50 uM; heparin = 1000 ug / ml; DMSO =% 1) 37 ° C (Şekil 1A HCV partikülleri ile, Uzun Vadeli ' ) bir 1: 1 oranında elde edildi. Örneğin, 1 x 10 4 FFU ihtiva eden bir 100 ul virüs aşı için bir 100 uM chlA çalışma seyreltme 100 ul; Bu 50 uM'lik nihai bir konsantrasyonda chlA tedavi verir.
  3. Virüs-ilaç karışımı test bileşiklerinin için "alt terapötik" (etkisiz) konsantrasyonu sulandırmak. Örneğin, HCV karşı chlA ve PUG etkisiz konsantrasyonu 1 mcM 31 olan; bu nedenleBu (% 2 FBS ile hücre kültürü ortamı) bazal ortam içinde 9.8 ml ile gerçekleştirilebilir virüs ilaç karışımı bir 50-kat seyreltme gerektirir.
    Not: alt terapötik konsantrasyonuna seyreltme test bileşikleri ve konak hücre yüzeyi arasında önemli bir etkileşim önler ve hücre içermeyen viryonları üzerindeki tedavi etkisinin incelenmesine olanak tanır. Bu seyreltme, özellikle viral enfeksiyona karşı test bileşiklerinin anti-viral doz yanıtı bağlıdır, ve bu belirli tahlil 31 gerçekleştirmeden önce belirlenir unutmayın.
  4. Karşılaştırma için, test bileşikleri ile virüs karışımı hemen alt terapötik konsantrasyonu enfeksiyon öncesinde (Şekil 1A 'Kısa Dönem') ila (inkübasyon süresi) seyreltin.
  5. Ve viral izin vermek için 37 ° C'de 3 saat süreyle inkübe edilir, Huh-7,5 hücre mono tabakasında üzerine seyreltilmiş HCV ilaç karışımı, 100 ul ilave edin (nihai MOI = 0,01 virüs miktarı 1 x 10 2 FFU şimdi de)adsorpsiyon.
  6. Enfeksiyonu takiben, seyreltilmiş inokulum çıkarıp hafifçe iki kez 200 ul PBS ile kuyu yıkayın.
    Not: hücrelerini kaldırarak önlemek için hafifçe yıkar gerçekleştirin.
  7. Her bir oyuğa bazal ortam 100 ul uygulayın ve 72 saat boyunca 37 ° C'de inkübe edin.
  8. 2 'de tarif edildiği gibi lusiferaz aktivitesi için supernatant analiz etmek sureti ile elde edilen enfeksiyon analiz edin. Viral Enfeksiyon okunması '.

4. Viral ataşman Deneyi

Not: Çeşitli virüsler için kuluçka süresi ve viral doz örnekleri arasında, Şekil 2A'da yer alan 'ataşman' vardır. Virüsün yüksek konsantrasyonlar da MOI / PFU artırarak test edilebilir.

  1. Tohum Huh-7,5, 96-çukurlu plaka içindeki hücreler (oyuk başına 1 x 10 4 hücreler) ve bir tek tabaka elde etmek üzere bir% 5 CO2 inkübatöründe 37 ° C'de O / N inkübe edin.
  2. 4 ° C de fo plakalarda hücredeki tekli katmanlara önceden soğukr, 1 saat.
  3. HCV aşı ile hücreleri (MOI = 0.01) ve test bileşikleri veya kontroller Co-muamele (nihai konsantrasyonlar: chlA = 50 uM; DMSO =% 1 PUG = 50 uM; heparin = 1000 ug / ml) 4 ° C'de 3 saat. Örneğin, 1 x 10 2 FFU ihtiva eden bir 90 ul virüs aşı için, 500 uM chlA çalışma seyreltme 10 ul; Bu chlA 50 uM'lik bir son konsantrasyon elde tedavi ve MOI'da HCV enfeksiyonu = 0.01, hücre tek tabaka elde edilir.
    Not: bağlayıcı virüs için izin verir, ancak en verimli 37 ° C'de meydana girişi engeller beri 4 ° C'de deneyi yürütmek için önemlidir. Sıcaklık 4 ° C de muhafaza edilmesini sağlamak için, buz üzerinde virüs ve test bileşiklerinin ilave bir 4 ° C buzdolabında izleyen inkübasyon gerçekleştirin.
  4. Süpernatantı ve yavaşça iki kez buz gibi soğuk 200 ul PBS ile hücre mono tabakasının yıkayın.
    Not: hücrelerini kaldırarak önlemek için hafifçe yıkar gerçekleştirin <./ li>
  5. Her bir oyuğa bazal ortam 100 ul uygulayın ve 72 saat boyunca 37 ° C'de inkübe edin.
  6. 2 'de tarif edildiği gibi lusiferaz aktivitesi için supernatant analiz etmek sureti ile elde edilen enfeksiyon analiz edin. Viral Enfeksiyon okunması '.

5. Viral kayıt / Füzyon Analizi

Not: kuluçka dönemleri ve çeşitli virüsler için viral doz Örnek Şekil 2A 'Giriş / Fusion' listelenmiştir. Virüsün yüksek konsantrasyonlar da MOI / PFU artırarak test edilebilir.

  1. Tohum Huh-7,5, 96-çukurlu plaka içindeki hücreler (oyuk başına 1 x 10 4 hücreler) ve bir tek tabaka elde etmek üzere bir% 5 CO2 inkübatöründe 37 ° C'de O / N inkübe edin.
  2. 1 saat süre ile 4 ° C 'de plakalarda hücredeki tekli katmanlara önceden soğuk.
  3. 3 saat boyunca 4 ° C 'de HCV ile hücreleri (MOI = 0.01) Infect. Örneğin, 1 x 10 2 FFU ihtiva eden bir 100 ul virüs inokulum kullanın.
    Not: addin gerçekleştirBuz üzerinde viral inokülüm ve 4 ° C buzdolabı izleyen inkübasyon tion viral bağlanmayı değil girişini sağlayacak 4 ° C'de, bir ısıyı sürdürmek için.
  4. Süpernatantı ve yavaşça iki kez buz gibi soğuk 200 ul PBS ile hücredeki tekli katmanlara yıkayın.
    Not: hücrelerini kaldırarak önlemek için hafifçe yıkar gerçekleştirin.
  5. (Nihai konsantrasyonlar:; PUG = 50 uM; heparin = 1000 ug / ml; chlA = 50 uM DMSO =% 1) test bileşikleri veya kontroller ile kuyu tedavi ve 3 saat boyunca 37 ° C'de inkübe edin. Örneğin, ortam 90 ul 500 uM chlA çalışma seyreltme 10 ul karıştırın ve kuyu tedavi; Bu 50 uM'lik nihai bir konsantrasyonda chlA tedavi verir.
    Not: 37 ° C, 4 ° C kayma geç viral giriş / füzyon olgusuna kolaylaştırır ve bu nedenle bu özel adım test, bileşiklerin etkisinin değerlendirilmesine olanak sağlamaktadır.
  6. İlacı içeren süpernatant aspire olmayan içselleştirmiş kaldırmaksitrat tamponu (50 mM sodyum sitrat, 4 mM potasyum klorür, pH 3.0) ya da PBS 200 ul ya da yıkama ile hücre dışı virüs. 72 saat boyunca 37 ° C'de inkübe edilmeden önce, bazal ortam 100 ul uygulanır.
  7. 2 'de tarif edildiği gibi lusiferaz aktivitesi için supernatant analiz etmek sureti ile elde edilen enfeksiyon analiz edin. Viral Enfeksiyon okunması '.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Şekil 1'de, 'viral inaktivasyon deneyi' iki özel doğal bileşikler chlA ve PUG hücre serbest halde farklı zarflı virüsler inaktive ve sonraki enfeksiyonu önlemek olabilir olup olmadığını incelemek için yapıldı. Bu bileşiklerin sitotoksisitesi ve antiviral dozu tepkisi mekanik çalışma 31 gerçekleştirmeden önce tespit edilmiştir. Virüs test bileşikleri ile ön-muamele edilmiştir ve sonra virüs-ilaç karışımları her bir virüs sistemi için ilgili hücre tek tabaka üzerine aşılamadan önce alt terapötik konsantrasyonlarda seyreltilmiştir. Şekil 1 'de gösterildiği gibi, chlA ve PUG hem sonraki enfeksiyona hücre tek katmanının korumalı olmayan etki ile sonuçlanan, hücresiz virionlar ile etkileşim ortaya çıktı. % 80 blok MV ve RSV karşı gözlendi - 60 ise iki test bileşikleri, HCMV, HCV ve DENV-2'ye karşı neredeyse% 100 inhibisyon elde etti. Bu sonuçlar, suggeest chlA ve PUG onları inaktive ve enfektivitesini nötralize ederek bu serbest virüs partikülleri üzerinde doğrudan etkisi olduğunu.

Şekil 2'de, eki ve giriş / füzyon deneyleri HCMV, HCV, NV-2, MV ve RSV bu erken viral giriş ile ilgili olaylara karşı chlA ve PUG etkisini araştırmak amacıyla yapılmıştır. ChlA ve PUG Hem etkili bir ortaya çıkan viral enfeksiyon (: açık gri çubuklar Şekil 2'de, 'Ek') üzerine inhibisyonu ile gösterildiği gibi ilgili konakçı hücre üzerine incelenen virüslerin bağlanmasını engellemiştir. Her iki bileşiğin virüs eki üzerindeki önleyici etkisi, HCMV 'nin (Şekil 2B), HCV (Şekil 2C) karşı benzer, NV-2 (Şekil 2B) ve 90 arasında değişen, RSV (Şekil 2F), -% 100. Öte yandan, PUG tw gelen inhibisyon oranı ile, MV bağlanması (Şekil 2E) karşı chlA daha etkili olduğu ortaya çıktı80 -% 50 arasında değişen o bileşikleri. Birçok virüs girişini HCMV'nin da inhibe eki, NV-2, RSV, reklam MV engellemek için bilinen, ancak HCV karşı daha az etkili oldu kontrolü tedavisi heparin. Bunu takip eden 'viral giriş / füzyon deneyi' chlA ve PUG virüs girdi / füzyon aşamasında kendi faaliyetini muhafaza olup olmadığını inceledik (Şekil 2 'Entry / Fusion': koyu gri çubuklar). İlgili hücre tek tabaka üzerinde% 90 koruyucu etki - 50 verimli, - Yine chlA ve PUG hem etkin bir muayene virüsler (F Şekil 2B) viral giriş / füzyon adımını bozduğu gözlendi. Heparin da kuvvetli inhibe giriş / DENV-2 ve RSV enfeksiyonlarının füzyon, ancak HCMV, HCV ve MV (<ortalama% 40 inhibisyon) karşı daha az etkili oldu.

<td> HEL
Virüs Hücre Tipi
HCMV
HCV Huh-7.5
NV-2 Vero
MV CHO-SLAM
RSV HEp-2

Tablo 1:. Viral enfeksiyon için konukçu hücre türü için temsili sonuçlarda tarif edilen her viral enfeksiyon sistemi için kullanılan hücre tipi gösterilir. Hücreleri ile ilgili ilave detaylar referans 31 bulunabilir.

figür 1
Şekil 1. deney bileşikleri chlA ve PUG viral enfeksiyonların inaktivasyonu farklı virüs uzun bir süre için deney bileşikleri ile muamele edilmiştir. (1.5 inkübe - titrasyon önce 3 saat, hafif gri çubuklar) ya da kısa bir süre (hemen seyreltildi; koyu gri alt terapötik konsantrasyonları bir seyreltme öncesinde 37 ° C 'de çubuklar)yon ve ilgili konakçı hücreler üzerinde enfeksiyonun sonraki analiz. Nihai virüs konsantrasyonu ile (sol tarafta), deney (A) Şeması (PFU / göz veya İB), uzun vadeli bir virüs ilacın inkübasyon süresi, (i), ve (ii) daha sonra inkübasyon süresi sağdaki tabloda her bir virüs için belirlenmiştir. (B) HCMV, (C) HCV için analizler, (D), NV-2 (E) OG, ve (F) RSV her ek panelinde gösterilir. Sonuçlar Üç bağımsız deneyden ortalama (SEM) standart hataları ± araçlar virüsü enfeksiyonunun DMSO negatif kontrol tedavisi ve gösterilen veriler karşı çizilmiştir. Bu rakam referansı 31 modifiye edilmiştir. Bu rakamın büyük halini görmek için lütfen buraya tıklayınız.

Şekil 2,
Şekil 2. Virüs eki ve giriş / füzyon karşı test bileşikleri chlA ve PUG antiviral aktiviteleri değerlendirme. (A) gösterilen deney prosedürü, virüs konsantrasyonu (PFU / göz veya İB) ve test bileşikleri ile toplama ve işlem süresi, (i, ii, iii) şemaları ve ilişkili tablolar, her bir virüs için sunulmaktadır. Virüs bağlanma analizi (açık gri çubuklar), farklı hücre tiplerinin mono tabakaları, 1 saat boyunca 4 ° C'de önceden soğutulmuş olan, daha sonra 4 ° C de, ilgili virüsler ve test bileşikleri ile birlikte muamele edilmiş (1,5-3 saat i) daha sonra inkübasyon için inoculates ve test bileşikleri yıkamadan önce (37 ° C, ii) ve virüs enfeksiyonu incelenmesi. Virüs giriş / füzyon analizi (koyu gri çubuklar) olarak, aşılanmış hücre mono tabakaları, 1 saat boyunca 4 ° C'de önceden soğutulmuş ve daha sonra 1.5, 4 ° C de, ilgili virüs ile meydan - 3 saat, (i). Bundan sonra hücreler,yıkandı ve sıcaklık viral giriş / füzyon olgusuna kolaylaştırmak için 37 ° C'ye kaydırılır (ii) 'sırasında ek bir inkübasyon süresi için, test bileşikleri ile muamele edildi. İnkübasyonun sonunda, hücre dışı virüs ya sitrat tampon maddesi (pH 3.0) ya da PBS yıkama ile uzaklaştırılmış ve hücreler virüs bulaşması analizi için, (iii) kuluçkalanmıştır. (B) HCMV, (C) HCV için sonuçlar, (D), NV-2 (E) OG, ve (F) RSV her ek panelinde gösterilir. Veriler, virüs enfeksiyonunun DMSO negatif kontrol tedavisi karşı çizilmiştir ve üç bağımsız deneyden ortalama ± SEM olarak sunulmuştur. Bu rakam referansı 31 modifiye edilmiştir. Bu rakamın büyük halini görmek için lütfen buraya tıklayınız.

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
DMEM GIBCO 11995-040
FBS GIBCO 26140-079
Penicillin-Streptomycin GIBCO 15070-063
Amphotericin B GIBCO 15290-018
DMSO Sigma D5879
In vitro toxicology assay kit, XTT-based Sigma TOX2
PBS pH 7.4  GIBCO 10010023
Microplate reader Thermo Scientific 89087-320
Microcentrifuge Thermo Scientific 75002420
BioLux Gaussia luciferase assay kit New England Biolabs E3300L   
Luminometer Promega GloMax-20/20
Sodium citrate, dihydrate Sigma 71402
Potassium chloride Sigma P5405

DOWNLOAD MATERIALS LIST

References

  1. Munier, C. M., Andersen, C. R., Kelleher, A. D. HIV vaccines: progress to date. Drugs. 71, 387-414 (2011).
  2. Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 11, 532-543 (2011).
  3. Sung, H., Schleiss, M. R. Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines. 9, 1303-1314 (2010).
  4. Torresi, J., Johnson, D., Wedemeyer, H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol. 54, 1273-1285 (2011).
  5. Wright, M., Piedimonte, G. Respiratory syncytial virus prevention and therapy: past, present, and future. Pediatr Pulmonol. 46, 324-347 (2011).
  6. Christou, L. The global burden of bacterial and viral zoonotic infections. Clin Microbiol Infect. 17, 326-330 (2011).
  7. Cascio, A., Bosilkovski, M., Rodriguez-Morales, A. J., Pappas, G. The socio-ecology of zoonotic infections. Clin Microbiol Infect. 17, 336-342 (2011).
  8. Grais, R. F. Measles vaccination in humanitarian emergencies: a review of recent practice. Confl Health. 5, 21 (2011).
  9. Gautret, P. Emerging viral respiratory tract infections-environmental risk factors and transmission. Lancet Infect Dis. 14, 1113-1122 (2014).
  10. Sampathkumar, P. Middle East respiratory syndrome: what clinicians need to know. Mayo Clin Proc. 89, 1153-1158 (2014).
  11. Burd, E. M. Ebola Virus: a Clear and Present Danger. J Clin Microbiol. 53, 4-8 (2015).
  12. Bishop, B. M. Potential and Emerging Treatment Options for Ebola Virus Disease. Ann Pharmacother. (2014).
  13. Arduino, P. G., Porter, S. R. Oral and perioral herpes simplex virus type 1 (HSV-1) infection: review of its management. Oral Dis. 12, 254-270 (2006).
  14. Mitrasinovic, P. M. Advances in the structure-based design of the influenza A neuraminidase inhibitors. Curr Drug Targets. 11, 315-326 (2010).
  15. Soriano, V. Directly acting antivirals against hepatitis C virus. J Antimicrob Chemother. 66, 1673-1686 (2011).
  16. Haqqani, A. A., Tilton, J. C. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res. 98, 158-170 (2013).
  17. Melby, T., Westby, M. Inhibitors of viral entry. Handb Exp Pharmacol. 177-202 (2009).
  18. Vanderlinden, E., Naesens, L. Emerging antiviral strategies to interfere with influenza virus entry. Med Res Rev. 34, 301-339 (2014).
  19. Antoine, T. E., Park, P. J., Shukla, D. Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Rev Med Virol. 23, 194-208 (2013).
  20. Pawlotsky, J. M., Chevaliez, S., McHutchison, J. G. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology. 132, 1979-1998 (2007).
  21. Beyleveld, G., White, K. M., Ayllon, J., Shaw, M. L. New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions. Antiviral Res. 100, 120-132 (2013).
  22. Kilianski, A., Baker, S. C. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res. 101, 105-112 (2014).
  23. Caillet-Saguy, C., Lim, S. P., Shi, P. Y., Lescar, J., Bressanelli, S. Polymerases of hepatitis C viruses and flaviviruses: structural and mechanistic insights and drug development. Antiviral Res. 105, 8-16 (2014).
  24. Frey, S. Temperature dependence of cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1. J Virol. 69, 1462-1472 (1995).
  25. Tscherne, D. M. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol. 80, 1734-1741 (2006).
  26. Madan, R. P. Molecular umbrellas: a novel class of candidate topical microbicides to prevent human immunodeficiency virus and herpes simplex virus infections. J Virol. 81, 7636-7646 (2007).
  27. Haywood, A. M., Boyer, B. P. Time and temperature dependence of influenza virus membrane fusion at neutral pH. J Gen Virol. 67, (Pt 12), 2813-2817 (1986).
  28. Haywood, A. M., Boyer, B. P. Sendai virus membrane fusion: time course and effect of temperature, pH, calcium, and receptor concentration). Biochemistry. 21, 6041-6046 (1982).
  29. Wang, G., Hernandez, R., Weninger, K., Brown, D. T. Infection of cells by Sindbis virus at low temperature. Virology. 362, 461-467 (2007).
  30. Lin, L. T. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol. 85, 4386-4398 (2011).
  31. Lin, L. T. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 13, 187 (2013).
  32. Marukian, S. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology. 48, 1843-1850 (2008).
  33. Baba, M., Snoeck, R., Pauwels, R., de Clercq, E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents ChemotheR. 32, 1742-1745 (1988).
  34. Barth, H. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol CheM. 278, 41003-41012 (2003).
  35. Flint, S. J., Enquist, L. W., Racaniello, V. R., Skalka, A. M. Principles of Virology. 3rd edn, ASM Press. (2008).
  36. Brown, M. G. Dramatic caspase-dependent apoptosis in antibody-enhanced dengue virus infection of human mast cells. J Leukoc Biol. 85, 71-80 (2009).
  37. Huang, Y., Cyr, S. L., Burt, D. S., Anderson, R. Murine host responses to respiratory syncytial virus (RSV) following intranasal administration of a Protollin-adjuvanted, epitope-enhanced recombinant G protein vaccine. J Clin Virol. 44, 287-291 (2009).
  38. Isaacson, M. K., Compton, T. Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol. 83, 3891-3903 (2009).
  39. Leonard, V. H., et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest. 118, 2448-2458 (2009).
  40. Ciesek, S. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology. 54, 1947-1955 (2011).
  41. Lin, L. T. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J Hepatol. 62, 541-548 (2015).
  42. Atkins, C., Evans, C. W., White, E. L., Noah, J. W. Screening methods for influenza antiviral drug discovery. Expert Opin Drug Discov. 7, 429-438 (2012).
  43. Zhang, J. Identification of novel virus inhibitors by influenza A virus specific reporter cell based screening. Antiviral Res. 93, 48-54 (2012).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics