Effect of Fluorescent Proteins on Fusion Partners Using Polyglutamine Toxicity Assays in Yeast

This article has been accepted and is currently in production


For the investigation of protein localization and trafficking using live cell imaging, researchers often rely on fusing their protein of interest to a fluorescent reporter. The constantly evolving list of genetically encoded fluorescent proteins (FPs) presents users with several alternatives when it comes to fluorescent fusion design. Each FP has specific optical and biophysical properties that can affect the biochemical, cellular, and functional properties of the resulting fluorescent fusions. For instance, several FPs tend to form nonspecific oligomers that are susceptible to impede on the function of the fusion partner. Unfortunately, only a few methods exist to test the impact of FPs on the behavior of the fluorescent reporter. Here, we describe a simple method that enables the rapid assessment of the impact of FPs using polyglutamine (polyQ) toxicity assays in the budding yeast Saccharomyces cerevisiae. PolyQ-expanded huntingtin proteins are associated with the onset of Huntington's disease (HD), where the expanded huntingtin aggregates into toxic oligomers and inclusion bodies. The aggregation and toxicity of polyQ expansions in yeast are highly dependent on the sequences flanking the polyQ region, including the presence of fluorescent tags, thus providing an ideal experimental platform to study the impact of FPs on the behavior of their fusion partner.