Здесь мы описываем эффективные высокой пропускной способности<em> На месте</em> Гибридизации (МОГ) метод визуализации моделей экспрессии мРНК в развитии плода разделы предстательной железы мыши ткани. Метод может быть легко адаптирована для визуализации моделей экспрессии мРНК в других тканях, мыши или в тканях, от других видов.
Development of the lower urogenital tract (LUT) is an intricate process. This complexity is evidenced during formation of the prostate from the fetal male urethra, which relies on androgenic signals and epithelial-mesenchymal interactions1,2. Understanding the molecular mechanisms responsible for prostate development may reveal growth mechanisms that are inappropriately reawakened later in life to give rise to prostate diseases such as benign prostatic hyperplasia and prostate cancer.
The developing LUT is anatomically complex. By the time prostatic budding begins on 16.5 days post conception (dpc), numerous cell types are present. Vasculature, nerves and smooth muscle reside within the mesenchymal stroma3. This stroma surrounds a multilayered epithelium and gives rise to the fetal prostate through androgen receptor-dependent paracrine signals4. The identity of the stromal androgen receptor-responsive genes required for prostate development and the mechanism by which prostate ductal epithelium forms in response to these genes is not fully understood. The ability to precisely identify cell types and localize expression of specific factors within them is imperative to further understand prostate development. In situ hybridization (ISH) allows for localization of mRNAs within a tissue. Thus, this method can be used to identify pattern and timing of expression of signaling molecules and their receptors, thereby elucidating potential prostate developmental regulators.
Here, we describe a high throughput ISH technique to identify mRNA expression patterns in the fetal mouse LUT using vibrating microtome-cut sections. This method offers several advantages over other ISH protocols. Performing ISH on thin sections adhered to a slide is technically difficult; cryosections frequently have poor structural quality while both cryosections and paraffin sections often result in weak signal resolution. Performing ISH on whole mount tissues can result in probe trapping. In contrast, our high throughput technique utilizes thick-cut sections that reveal detailed tissue architecture. Modified microfuge tubes allow easy handling of sections during the ISH procedure. A maximum of 4 mRNA transcripts can be screened from a single 17.5dpc LUT with up to 24 mRNA transcripts detected in a single run, thereby reducing cost and maximizing efficiency. This method allows multiple treatment groups to be processed identically and as a single unit, thereby removing any bias for interpreting data. Most pertinently for prostate researchers, this method provides a spatial and temporal location of low and high abundance mRNA transcripts in the fetal mouse urethra that gives rise to the prostate ductal network.
Использование метода, описанного здесь, можно обнаружить мРНК во всех основных типов клеток и тканей отсеков плода мужского и женского мыши ТМП в том числе мезенхимальных колодки, уротелия, гладких мышц, предстательной железы почки, семяизвергательного канала и влагалища. 50 мкм раздел…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить д-ра Lan Йи, Института рака в Нью-Джерси, для оказания технической помощи в подготовке ткани корзины. Эта работа финансировалась Национальным институтом здоровья и гранты DK083425 DK070219.
Name of the reagent | Company | Catalogue number |
---|---|---|
Anti-Digoxigenin antibody, Fab fragments | Roche Applied Science | 11214667001 |
Blocking reagent | Roche Applied Science | 11096176001 |
BM Purple AP substrate, precipitating | Roche Applied Science | 11442074001 |
Bovine Serum Albumin | Fisher Scientific | BP1600-100 |
Cell culture plate, 24 well | Corning | 3524 |
Digoxigenin 11-UTP | Roche Applied Science | 1277073910 |
dNTPs | Roche Applied Science | 11969064001 |
Double-edged razor blade | Wilkinson Sword | Classic Model |
Eliminase RNase remover | Decon Laboratories | 1102 |
Formamide | Sigma | F5786-1L |
Gel extraction kit | Qiagen | 28704 |
Glutaraldehyde, 25% solution in H2O | Sigma | G6257-100ML |
Heparin, sodium salt | Sigma | H3393 |
Hydrogen peroxide, 30% solution in H2O | Fisher Scientific | BP2633-500 |
Levamisole | Sigma | L9756 |
Loctite 404 quick set instant adhesive | Henkel Corp. | 46551 |
Magnesium chloride | Fisher Scientific | M33-500 |
Maleic acid | Sigma | M0375-500G |
Microcentrifuge tubes, 1.5mL | Biologix Research Company | BP337-100 |
Millicell culture plate insert | Millipore | PICM01250 |
Molecular grinding resin | G-Biosciences | 786-138PR |
Paraformaldehyde, 4% solution in phosphate buffered saline | Affymetrix | 19943 |
Phosphate buffered saline, without Ca & Mg | MP Biomedicals | ICN1760420 |
Polyester mesh, 33 micron, 12” x 24” | Small Parts Inc | CMY-0033-D |
Proteinase K solution, 20mg/ml | Amresco | E195-5ML |
QIAshredder Columns | Qiagen | 79654 |
Q solution | Qiagen | Provided with Taq DNA polymerase |
RNase | Sigma | R6513 |
RNase inhibitor | Roche Applied Science | 03335399001 |
RNeasy mini kit | Qiagen | 74104 |
RNEASY mini kit | Qiagen | 74104 |
RQ1 RNase-free DNase | Promega | M6101 |
SeaPlaque low-melt agarose | Lonza | 50101 |
Sheep serum | Sigma | S2263-500mL |
Stericup filter unit, 0.22μm, polyethersulfone, 500mL | Millipore | SCGPU05RE |
Sodium azide, granular | Fisher Scientific | S227I-100 |
Sodium chloride | Fisher Scientific | BP358-212 |
Sodium dodecyl sulfate | Fisher Scientific | S529-500 |
SSC, 20X solution | Research Products International | S24022-4000.0 |
SuperScript III first-strand synthesis system | Invitrogen | 18080-051 |
T7 RNA polymerase | Roche Applied Science | 10881767001 |
Taq DNA polymerase | Qiagen | 201203 |
Tris-HCl | Fisher Scientific | BP153-1 |
Tween 20 | Fisher Scientific | BP337-100 |
Vibrating microtome with deluxe specimen bath | Leica Microsystems | VT1000A |
Yeast tRNA | Roche Applied Science | 109495 |