Summary

Monitorização das células-autônomas Ritmos relógio circadiano de expressão genética dos Repórteres Bioluminescência luciferase

Published: September 27, 2012
doi:

Summary

Relógios circadianos funcionam no interior das células individuais, ou seja, são células-autónomo. Aqui, descrevem métodos para a geração de modelos de células autónomas relógio usando não-invasiva, com base em tecnologia de luciferase bioluminescência em tempo real. Células repórter fornecer tratáveis, sistemas modelo funcional para estudar biologia circadiano.

Abstract

Nos mamíferos, muitos aspectos do comportamento e fisiologia, tais como ciclos de sono-vigília e metabolismo do fígado são regulados pela endógenos relógios circadianos (revisado 1,2). O sistema de cronometragem circadiano é uma rede multi-oscilador hierárquica, com o relógio central, localizado no núcleo supraquiasmático (SCN) a sincronização e coordenação de relógios SCN-extra e periférico em outro lugar 1,2. As células individuais são as unidades funcionais para a geração e manutenção de ritmos circadianos 3,4, e estes osciladores de diferentes tipos de tecidos de um organismo a percentagem notavelmente semelhante mecanismo de feedback negativo bioquímico. No entanto, devido a interacções a nível de rede neuronal no SCN e através rítmicos, pistas sistémicos ao nível dos organismos, os ritmos circadianos no nível organismal não são necessariamente células autónoma 5-7. Em comparação com estudos tradicionais de actividade locomotora in vivo e ex vivo explantes SCN, cell com base em ensaios in vitro permitir a descoberta de células autônomas defeitos circadianos 5,8. Estrategicamente, baseados em células modelos são mais tratáveis ​​experimentalmente para a caracterização fenotípica e rápida descoberta de mecanismos de clock básico 5,8-13.

Porque os ritmos circadianos são dinâmicos, medições longitudinais com alta resolução temporal são necessários para avaliar a função do relógio. Em anos recentes, a gravação em tempo real usando a bioluminescência de luciferase do pirilampo, como repórter tornou-se uma técnica comum para o estudo de ritmos circadianos em mamíferos 14,15, uma vez que permite o exame da persistência e da dinâmica de ritmos moleculares. Para monitorar a célula-autónomos ritmos circadianos de expressão do gene, os repórteres de luciferase pode ser introduzido em células através de transfecção transiente 13,16,17 ou transdução estável 5,10,18,19. Aqui descrevemos um protocolo de transdução estável usando lentivírus mediada entrega de genes. Tele sistema vector lentiviral é superior aos métodos tradicionais, tais como a transfecção transiente e transmissão germinal devido à sua eficácia e versatilidade: ela permite a entrega eficiente e a integração estável no genoma do hospedeiro de ambos dividindo e não as células em divisão 20. Uma vez que uma linha celular repórter é estabelecida, a dinâmica da função de relógio pode ser examinado através da gravação de bioluminescência. Nós primeiro descrever a geração de P (Per2)-D linhas repórter Luc, e em seguida, apresentam dados deste e de outros repórteres circadianos. Nestes ensaios, os fibroblastos 3T3 de rato e células de osteosarcoma humano U2OS são utilizados como modelos celulares. Também discutimos várias formas de utilizar esses modelos de relógio em estudos circadianos. Métodos descritos aqui podem ser aplicados a uma grande variedade de tipos de células para o estudo da base molecular e celular do relógio circadiano, e pode ser útil na resolução de problemas em outros sistemas biológicos.

Protocol

1. Construção de Lentiviral Repórteres luciferase A construção repórter de mamífero circadiano geralmente contém uma cassete de expressão no qual um promotor circadiano é fundido com o gene da luciferase. Ambas as estratégias de ligação e de recombinação baseada são comumente usados ​​para a clonagem de DNA. Como um exemplo, aqui descrevemos um método baseado em recombinação clonagem Gateway para gerar um P (Per2)-d repórter Luc lentiviral, em…

Discussion

1. Modificações protocolo atual

1.1 dispositivos de gravação e considerações de rendimento

Devido à sua disponibilidade comercial, a LumiCycle (Actimetrics) tornou-se o dispositivo de luminimetro mais comumente utilizado automatizado para gravação em tempo real 4,5,9,19,29-31. O LumiCycle emprega tubos fotomultiplicadores (PMT), como detectores de luz, que proporcionam sensibilidade extremamente elevada e baixo ruído 14, e, por consegui…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado em parte pela National Science Foundation (IOS-0920417) (ACL).

Materials

Name of reagent Company Catalogue number Comments
DMEM HyClone SH30243FS For regular cell growth
DMEM Invitrogen 12100-046 For luminometry
FBS HyClone SH3091003  
Pen/Strep/Gln(100x) HyClone SV3008201  
B-27 Invitrogen 17504-044  
D-Luciferin Biosynth L-8220  
Poly-L-lysine Sigma P4707  
Polybrene Millipore TR-1003-G  
Forskolin Sigma F6886  
All other chemicals Sigma    
Equipment
Tissue culture incubator     5% CO2 at 37°C
Tissue culture hood     BSL-2 certified
Light & fluorescent microscope     Phase contrast optional
LumiCycle Actimetrics    

References

  1. Reppert, S. M., Weaver, D. R. Coordination of circadian timing in mammals. Nature. 418, 935-941 (2002).
  2. Hastings, M. H., Reddy, A. B., Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649-661 (2003).
  3. Nagoshi, E. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 119, 693-705 (2004).
  4. Welsh, D. K. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289-2295 (2004).
  5. Liu, A. C. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 129, 605-616 (2007).
  6. Kornmann, B. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34 (2007).
  7. Hogenesch, J. B., Herzog, E. D. Intracellular and intercellular processes determine robustness of the circadian clock. FEBS Lett. 585, 1427-1434 (2011).
  8. DeBruyne, J. P., Weaver, D. R., Reppert, S. M. Peripheral circadian oscillators require CLOCK. Curr. Biol. 17, 538-539 (2007).
  9. Liu, A. C. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4, e1000023 (2008).
  10. Zhang, E. E. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 139, 199-210 (2009).
  11. Baggs, J. E. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009).
  12. Hirota, T. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).
  13. Ukai-Tadenuma, M. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 144, 268-281 (2011).
  14. Yamazaki, S., Takahashi, J. S. Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol. 393, 288-301 (2005).
  15. Welsh, D. K., Imaizumi, T., Kay, S. A. Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and mammalian cells. Methods Enzymol. 393, 269-288 (2005).
  16. Sato, T. K. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38, 312-319 (2006).
  17. Ueda, H. R. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192 (2005).
  18. Brown, S. A. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 3, e338 (2005).
  19. Hirota, T. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc. Natl. Acad. Sci. U.S.A. 105, 20746-20751 (2008).
  20. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241-245 (2006).
  21. Ueda, H. R. A transcription factor response element for gene expression during circadian night. Nature. 418, 534-539 (2002).
  22. Zufferey, R., Donello, J. E., Trono, D., Hope, T. J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886-2892 (1999).
  23. Buhr, E. D., Yoo, S. H., Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 330, 379-385 (2010).
  24. Balsalobre, A., Damiola, F., Schibler, . U.A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93, 929-937 (1998).
  25. Savelyev, S. A., Larsson, K. C., Johansson, A., Lundkvist, G. B. S. Slice Preparation, Organotypic Tissue Culturing and Luciferase Recording of Clock Gene Activity in the Suprachiasmatic Nucleus. J. Vis. Exp. (48), e2439 (2011).
  26. Akashi, M., Ichise, T., Mamine, T., Takumi, T. Molecular mechanism of cell-autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock. Mol. Biol. Cell. 17, 555-565 (2006).
  27. Ohno, T., Onishi, Y., Ishida, N. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 35, 648-655 (2007).
  28. Maier, B. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23, 708-718 (2009).
  29. Yoo, S. H. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 5339-5346 (2004).
  30. Liu, A. C., Lewis, W. G., Kay, S. A. Mammalian circadian signaling networks and therapeutic targets. Nat. Chem. Biol. 3, 630-639 (2007).
  31. Ko, C. H. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol. 8, e1000513 (2010).
  32. Izumo, M., Johnson, C. H., Yamazaki, S. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc. Natl. Acad. Sci. U.S.A. 100, 16089-16094 (2003).
  33. Izumo, M., Sato, T. R., Straume, M., Johnson, C. H. Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput. Biol. 2, e136 (2006).
  34. Chen, Z. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. U.S.A. 109, 101-106 (2011).
  35. Yamaguchi, S. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 302, 1408-1412 (2003).
  36. Akashi, M., Hayasaka, N., Yamazaki, S., Node, K. Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J. Neurosci. 28, 4619-4623 (2008).
  37. Hoshino, H., Nakajima, Y., Ohmiya, Y. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat. Methods. 4, 637-639 (2007).
  38. Asai, M. Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr. Biol. 11, 1524-1527 (2001).
  39. Wilsbacher, L. D. Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 489-494 (2002).
  40. Yamazaki, S. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288, 682-685 (2000).
  41. Welsh, D. K., Noguchi, T., Yuste, R. Cellular bioluminescence imaging. Imaging: A Laboratory Manual. , 369-385 (2011).
  42. Nakajima, Y. Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One. 5, e10011 (2010).
  43. Guilding, C. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain. 2, 28 (2009).
  44. O’Neill, J. S. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science. 320, 949-953 (2008).
  45. Fuller, P. M., Lu, J., Saper, C. B. Differential rescue of light- and food-entrainable circadian rhythms. Science. 320, 1074-1077 (2008).
  46. Mukherjee, S. Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol. Psychiatry. 68, 503-511 (2010).
  47. Saijo, K. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137, 47-59 (2009).
  48. Elias, G. M. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron. 52, 307-320 (2006).
  49. Isojima, Y. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 106, 15744-15749 (2009).
  50. Bucan, M., Abel, T. The mouse: genetics meets behaviour. Nat. Rev. Genet. 3, 114-123 (2002).
  51. Hughes, M. E. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).
  52. Atwood, A. Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc. Natl. Acad. Sci. U.S.A. 108, 18560-18565 (2011).
  53. Panda, S. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109, 307-320 (2002).

Play Video

Cite This Article
Ramanathan, C., Khan, S. K., Kathale, N. D., Xu, H., Liu, A. C. Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters. J. Vis. Exp. (67), e4234, doi:10.3791/4234 (2012).

View Video