Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

通过硅直接晶圆粘接制造均匀纳米级腔

Published: January 9, 2014 doi: 10.3791/51179

Summary

描述了永久粘合两个硅晶片以实现统一外壳的方法。这包括晶圆制备、清洁、RT 粘接和退化过程。由此产生的粘结晶圆(细胞)具有外壳均匀性~1%1,2。由此产生的几何形状允许测量封闭的液体和气体。

Abstract

使用石版图案和粘结硅晶片在兰姆达过渡附近进行了热容量和超流体分数的测量。与通常用于这些类型的实验多孔材料的密闭不同,粘结晶圆为禁闭提供了预先设计统一的空间。每个单元格的几何形状是众所周知的,这消除了数据解释中模糊性的巨大来源。

特别平坦,直径5厘米,375微米厚的Si晶圆与约1μm的变化在整个晶圆可以获得商业(例如,从半导体加工公司)。热氧化物生长在晶圆上,以定义 z 方向的禁闭维度。然后使用石版印刷技术将图案蚀刻在氧化物中,以便在粘合时创建所需的外壳。在其中一个晶圆(顶部)中钻一个孔,以便测量液体的引入。晶圆在RCA溶液中清洗2 个,然后放入微清洁室,用除离子水冲洗4。晶圆在 RT 粘合,然后在 €1,100 °C 下退化。 这形成了一种牢固而永久的纽带。这个过程可用于制作统一的外壳,用于测量从纳米到微米尺度的限制性液体的热和水动力学特性。

Introduction

当清洁硅晶片在 RT 被引入亲密接触时,它们会通过范德瓦尔斯的力量相互吸引,并形成薄弱的局部纽带。这种结合可以通过在5,6的高温下退化而变得更加牢固。粘接可以成功地完成与SiO2到Si或SiO2到SiO2的表面。硅晶圆的粘接最常用于绝缘器设备上的硅、硅基传感器和执行器以及光学设备7。这里描述的工作需要晶圆直接粘合在不同的方向,通过用它来实现明确定义的均匀间隔的外壳在整个晶圆面积8,9。具有明确的几何形状,其中可以引入流体,允许进行测量,以确定禁闭对流体特性的影响。水动力流可以研究,小尺寸可以控制从几十纳米到几微米。

SiO2 可在炉中使用湿或干热氧化工艺在 Si 晶圆上生长。然后,SiO2 可以使用石版画技术根据需要进行图案和蚀刻。在我们的工作中使用的模式包括一个广间隔的支持职位的模式,这些支持职位在平面或胶片几何中结合后产生(见 图1)。我们还对一维特性的通道和框阵列进行了成型,包括 (1μm)3 或 (2 μm)31(图 2)。在设计一个盒子的禁闭,通常1000万至6000万的晶圆,需要有一种方法来填补所有的单个盒子。顶部晶圆的单独图案与设计,站在两个晶圆30纳米或以上允许这一点。或者,同样,浅通道可以在顶部晶圆上设计,以便所有框都连接在一起。顶部晶圆上生长的氧化物厚度与底部晶圆上的厚度不同。这为设计增加了另一种程度的灵活性和复杂性。能够对两个晶圆进行图案,可以实现更多的限制几何形状。

这些粘结晶圆或单元格中几何特征的大小可能有所不同。小至30纳米的平面薄膜细胞已经成功地制作了10,11。在下面的厚度下,可以发生过度粘接,使晶圆绕支撑柱弯曲,从而"密封"细胞。最近,对液体4的一系列测量,他用一个阵列(2μm)3个盒子进行了测量,它们之间的分离距离不同,为10,12。由于生长氧化物所需的时间长度增加,深度大于 2μm 的特征不太实用。然而,用厚达3.9微米9的氧化物进行了测量。横向维度小度的限制产生于光刻能力的限制。横向维度的大限由晶圆的大小决定。我们已经成功地创造了平面细胞,横向维度几乎跨越了整个晶圆直径,但人们可以同样容易地想象在宽度几十纳米的顺序上对几个较小的结构进行图案化。然而,这种结构需要电子光束光刻。我们目前没有这样做。

在我们所有的工作中,粘结晶圆形成了一个真空紧闭的外壳。这是通过在晶圆周围保留一个3-4 毫米宽度的SiO 2的固体环,见 图1来实现的。这,在粘接后,形成一个紧密的密封。如果对需要输入和输出的水动力学研究感兴趣,这种设计很容易修改。

保税细胞的爆裂压力也已得到测试。我们发现,375微米厚的晶圆可以施加高达约9个大气层的压力。然而,我们还没有研究如何通过在较大的氧化物区域或更厚的晶圆上粘合来改善这种状况。

将硅细胞与填充线接轨的程序以及在低温下测量密闭氦特性的技术在Mehta 等人中给予。2 和加斯帕里尼 等人。13我们注意到,在冷却电池14时,硅的线性维度变化仅为0.02%。对于 RT 形成的模式,这可以忽略不计。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 粘结前,晶圆准备

此步骤(1.8 除外)在康奈尔纳米级设施洁净室完成。

  1. 使用湿氧化物工艺在标准热氧化炉中种植氧化物,以获得更好的厚度控制,实现非常薄的氧化物的干氧化过程。检查厚度,以获得与椭圆体相同的完整晶圆。
  2. 为您希望蚀刻的几何形状创建一个面膜。
  3. 在蚀刻的晶圆上旋转光分辨率。
  4. 暴露、开发和烘烤测试晶圆,并用适当的显微镜进行检查。
  5. 如果测试晶圆根据需要暴露,则蚀刻测试晶圆。氧化物厚度与横向特征维度的比例将决定湿蚀刻或干蚀刻是否合适。由于湿蚀刻是同源的,它们不会产生氧化物中的垂直壁。在许多情况下,这并不重要。如果需要垂直壁,可以使用反应离子蚀刻。如果蚀刻成功,则继续处理其他晶圆。通常,Si 和 SiO2 的疏水/亲水特性可用于查看蚀刻过程是否成功。
  6. 从晶圆中取出光分辨率。对于大多数光研究者来说,这最初可以用异丙醇和丙酮来完成。然而,一些少量的电阻仍将留在晶圆上。为了实现良好的粘合,需要完全消除这种电阻。
  7. 在反应离子等中使用短短的 20 分钟氧气脱氧过程。这将去除晶圆上残留的任何光分辨率。但是,这也会在裸露的硅中添加一些氧化层。这通常是1-4纳米15。
  8. 钻顶部晶圆的填充孔。这可以通过钻石尖钻头和智能切割润滑完成(有关制造商详细信息的材料,请参阅材料)。用除离子水钻孔后,立即冲洗掉智能切口。钻探还可用于使用直径大于 ~0.124 厘米的钻石糊(含 3-9μm grit)进行钻探。智能切割再次可用于润滑。我们使用1000-2000 rpm的小型精密钻机。

2. 粘结准备

  1. 为了粘结晶圆,清洁是最重要的。清洁晶圆需要采取一些步骤。首先,用 RCA 浴缸清洁。
    1. 在除离子化 (DI) 水中冲洗晶圆。
    2. 在"RCA"酸浴中清洁。RCA 酸浴为 H2O:H2O2:HCl,比率为 5:1:1。将晶圆置于 80 °C RCA 酸中 15 分钟,图案侧面朝上。这一步骤将消除任何金属污染。
    3. 从酸中取出晶圆,在 DI 水浴中冲洗 5 分钟。
    4. 接下来在"RCA"基座中进行清洁。RCA 基础为 H2O:H2O2:NH4OH,比率为 10:2:1。将晶圆放置在 80 °C RCA 底座中 15 分钟,图案侧面朝上。这一步骤将消除任何有机污染。
    5. 在DI水浴中冲洗晶圆约15分钟。
  2. 晶圆需要从 DI 水浴中取出并保持清洁,以便进行适当的粘合。这有两个步骤:
    1. 首先,将晶圆与图案蚀刻的两侧对面放在一个干净的微梳子上,如 图3B所示。它们由约1毫米的特氟隆标签隔开。在晶圆缓慢旋转(约 10-60 rpm)时将除离子水喷洒约 2 分钟,以消除任何颗粒污染。此时,晶圆之间将留下一层水。这样可以防止下一步之前的粉尘污染。
    2. 用透明丙烯酸盖盖住晶圆,在 3,000 rpm 时将晶圆旋转干燥约 30 分钟。使用 250 W 红外热灯帮助干燥过程。快速旋转将诱使任何颗粒污染物与水膜的弹出,如图3C。
  3. 在取下晶圆盖子之前,通过旋转盖子来拆下分离晶圆的标签。这将使晶圆在微清洁室中与当地接触。现在,晶圆可以安全地从载体上的微清洁室中取出。晶圆之间约 1μm 的微小间隙将最大限度地减少这一步骤中的灰尘污染。此外,此时不要用钳子拾取晶圆,因为这会引发不对称粘合。相反,使用可移动的载体将晶圆输送到树干压榨机上。

3. 晶圆粘结

  1. 使用树干压榨机和相当刚性和光滑(神经)球将两个晶圆一起压在一起。神经球用于从中向外向晶圆施加压力。这样施加的压力允许当粘合波从中心扩散时将被困的空气推出。在中心启动粘接可最大限度地减少晶圆轮廓彼此积积的压力。晶圆的自由状态平整度约为 1μm,而粘接中实现的间隙在几 nm 内是均匀的。因此,晶圆必须扭曲其自由状态,以实现这一点。
    1. 使用红外光源和带 1μm 高通滤镜的探测器查找干扰边缘,检查粘结。示例图像显示在 图 4图 5 中。如果粘接不良,就会出现干扰边缘(牛顿环)。如果粘接良好,可以继续执行步骤 3.3。如果粘接不畅且存在不统一性,则按以下形式进行。
    2. 将电池放在光学平面上,用滤纸盖住,以保护和缓冲顶部晶圆,并将晶圆与晶圆钳一起压榨。将脱债券的"气泡"推到中间(有填充孔的地方)或边缘。在边缘附近施加力时要小心,因为晶圆可能稍微偏移到中心。因此,如果顶部晶圆悬过底部晶圆,边缘附近的压力可能会导致顶部晶圆破裂。
    3. 如果粘合不规则仍然存在或灰尘颗粒明显,则通过在晶圆之间夹住剃须刀刀片来分割晶圆。从头开始重复该过程(步骤 2.1.1)。至此,粘接是可逆的。晶圆可以在 RT 上多次重新粘结,同时尝试获得可接受的粘合。
  2. 在获得可接受的 RT 粘合后,继续对晶圆进行退化。温度超过900°C需要达到,以确保适当的退化5,6。
    1. 将细胞放在石英真空夹头上,使填充孔集中在夹头的泵孔上。夹头连接到石英泵管,用于在退赛前和退赛过程中疏散细胞。这根管子延伸到炉外。疏散细胞会导致一种大气压施加到细胞上。这将有助于结合。如果炉温升高过快,泵送也有必要防止压力积聚。显著降低细胞内压力所需的时间将取决于细胞内的几何形状。
    2. 为了避免氧化物在细胞外部的生长,用不反应气体(通常 为4He)清除炉室,这样不会生长氧化物。
    3. 为了让菌株有时间放松,在 ~4 小时内将温度从 250-1,200 °C 提升非常重要。在 1,200 °C 停留至少 4 小时后,关闭炉子。
    4. 允许系统冷却到RT。
  3. 再次使用 图6中显示的红外光源和探测器分析细胞。如果退化进展顺利,细胞看起来会和最初放入炉子里时一样好,或者通常比最初放入炉子里时好。如果有不可接受的边缘表示粘结不良,则必须从头再重复整个过程:但是,这必须用新的晶圆完成。一旦退化,晶圆之间的键是永久性的,不可能分裂。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

适当的粘结晶圆将没有未绑定区域。在退赛后尝试分割晶圆会导致细胞因粘结强度而碎成碎片。正确粘合晶圆的红外图像显示在图 5 图 6 中。退化通常会提高细胞的均匀性,特别是如果局部未结核区域由于晶圆缺乏平整性。图 5 中,光点和边界为保税区。中心亮点是填充细胞的孔。在黑暗区域,晶圆处于 0.321 μm 分离。 图 5 中唯一未绑定区域靠近图像左上侧的边界。由于它位于氧化物边界边缘之外,因此不能充满液体,因此不会影响该细胞的使用。

有多种不良粘合的症状,可以表现出来,但最常见的是晶圆之间的陷阱颗粒。这将导致局部缺乏粘合发生,并通过在红外图像中显示干扰牛顿环可见,如 图4A。这个细胞有一个宽的氧化环在外面,在这个区域,我们可以看到几个小环指示未绑定区域。此外,在中心附近,形成一个方形的通道模式(看不见),有几个牛顿环的图案。这些细胞不适合使用。在 图4B 中,我们试图通过在当地施加压力来关闭未绑定区域。这在一定程度上是有效的,而且戒指更少,但仍然存在小的异族。然后,这些晶圆被拆分,粘接过程重新启动。

另一种可能的不良结合情况是过度债券。当晶圆之间没有足够的支撑柱来保持均匀的分离,或者柱子不够大,从而导致细胞崩溃时,就会发生这种情况,即将硅直接粘接到硅上。晶圆的摆动发生在柱子之间,以至于晶圆之间不再有任何间隙。这不容易通过红外成像来观察,通常只有在细胞无法填充时才能发现。过度结合是一个重大问题,主要是在处理非常小的差距(几十纳米),范德瓦尔斯的力量是最大的。

粘结晶圆的第三个潜在问题是,有时晶圆,无论多么干净,根本不够平坦,无法粘结。虽然很少见,但由于使用的晶圆异常平坦,有时晶圆之间的粘接会持续不佳。粘接过程涉及两个晶圆克服其自由状态的平坦度,并在统一的分离中相互轮廓。这需要对两个晶圆产生巨大的压力,并可能导致由于过度的压力而缺乏粘接。晶圆越厚,粘接越困难,因为晶圆失去灵活性6。当持续缺乏粘接时,应使用新的晶圆并再次尝试粘合。如果晶圆的相同一般位置再次粘接较差,则重复使用的晶圆不够平整,无法粘接,必须更换。

为了实现统一的细胞结构,在结合前后在RT对晶圆进行了研究。粘合前,使用椭圆体测量在成型前硅上生长的氧化物厚度。图案化后,原子力显微镜可用于确认尺寸。更复杂或更小的模式需要使用电子显微镜来分析模式。在所需的分离中粘合晶圆后,Fabry-Perot 干涉测量可用于确定粘结结构的局部分离。通过粘结晶圆表面的多次测量,可以映射出它们之间的分离,如 图 7所示。法布里-佩罗方法使用传输光的干扰,因为它被细胞中的平行表面倍增反射。但是,只有当间距大于 Si 的截止吸收波长的一半时,才能使用此功能。因此,验证与法布里-佩罗干涉测量结合的下限约为0.57μm9。这些方法结合细胞的红外成像,确认了细胞结构的均匀性。

Figure 1
图1。 准备粘合在一起的两个晶圆的示意图图(上图)。 蓝色代表 Si,红色代表 SiO2。左晶圆已用支撑柱对石版画进行图案化。此示例中未对正确的晶圆进行图案,尽管通常会对它进行图案化。将所示的两个晶圆组合在一起,创建一个由支撑柱中断的均匀分离平面几何形状。晶圆在 RT(下)粘合在一起。这种键是弱的,晶圆将需要退化,以加强债券。 单击此处查看更大的图像

Figure 2
图2。两个图案晶圆的横截面图纸粘合在一起。 底部晶圆有用离子束光刻在氧化物中的盒子(这些是深紫色方块)。顶部晶圆具有支撑柱,由红色方块显示,使顶部的波浪器在底部晶圆上方 33 nm 以上。这些功能不会在此绘图中缩放。 单击此处查看更大的图像

Figure 3
图3。微清洁室中 RT 冲洗和干燥过程的示意图图。A) 显示两个晶圆。B) 晶圆已放置在微调器上,由三个垫片分离距离约 1 mm。当晶圆缓慢旋转时,在晶圆之间喷洒一喷除离子水。C) 晶圆已覆盖,以 3,000 rpm 的速度旋转,在红外热灯下干燥。在此过程之后,分离标签通过在暴露到实验室环境之前旋转盖子而移开。单击此处查看更大的图像

Figure 4
图4。A) 初始 RT 粘接后单元格的红外图像。边界中有一些明显的未绑定区域(光环),这些区域不够大,不足以影响细胞的使用。然而,在中心附近,多个环表示存在分离为 ~3μm.B 的未绑定区域 。B) 在试图通过局部施加压力来强制粘合该区域后,很明显,中心附近的晶圆之间有一个粒子,导致缺乏粘结。这些晶圆必须拆分,过程必须重新启动。请注意,在整个图像中,沿着粘结的黑暗宽阔边界最清晰地看到微弱的瓦维。这是由于硅晶片本身的厚度变化,而不是它们的分离。 单击此处查看更大的图像

Figure 5
图5。细胞某一部分的特写红外图像。 由于该细胞的氧化物厚度为 0.321 μm,因此在此图像中可以清楚地将支撑柱视为整个细胞的常规光点。中心的亮点是填充孔。在左侧图像的边缘可以看到轻微的粘接缺失。 单击此处查看更大的图像

Figure 6
图6。细胞的红外图像紧接在 (A) 和 (B) 退赛之后。 有两个地方缺乏粘合,光环就证明了这一点。退网导致未绑定区域的位置和大小发生变化。覆盖大部分晶圆的"石块"拍子是实验使用的活跃区域。这是完全统一的。明亮中心孔周围的黑暗区域可能是机械泵回流造成的化学反应。 单击此处查看更大的图像

Figure 7
图7。粘结良好的晶圆间距的典型均匀性。 此图是使用 Fabry-Perot 干涉测量获得的,测量范围为粘结晶圆的面积约 20 mm x 20 mm。该细胞设计用于分离 0.989 μm。据测量,粘结晶圆同意这一点,超过百分之一。 单击此处查看更大的图像

Figure 8
图8。用科尔比诺17 环几何形状的晶圆横截面绘图。 两个区域被一个环隔离开来。顶部晶圆的图案将形成一个30纳米的薄膜。由此产生的几何学将有两个相对较大的腔室由纳米膜分离。 单击此处查看更大的图像

Subscription Required. Please recommend JoVE to your librarian.

Discussion

合适的硅光刻技术与直接晶圆粘接相结合,使我们能够在直径为 5 厘米的硅晶圆的整个区域内制造具有高度均匀小尺寸的真空紧闭外壳。这些外壳使我们能够研究液体 4He在其相位附近从正常液体向超流体过渡的行为。这些研究验证了对有限尺寸缩放的预测,并指出了仍有待探索的失败。这项工作还首次确定了一种非常强的耦合,这种耦合在两个液体区域之间,当被非常薄的~30纳米薄膜隔开时。沿着这些路线的研究正在继续与科尔比诺几何学中设计的细胞,如 图8所示。这个几何学有两个区域被一个环彼此隔离,只有一个30纳米厚的薄膜连接。

我们的细胞构造方法是有限的,因为SiO2 厚度远远大于2 μm是很难实现的。这是因为炉子生长时间长。在另一个限制中,分离小于约30纳米的大型平面结构很难实现,同时避免过度结合。当两个晶圆在支撑柱上弯曲并触摸时,就会发生过度绑定。避免这种情况的一种方法是使用较厚的晶圆和/或将支撑柱隔近。我们尚未充分探讨所有这些变量。特别是较厚的晶圆可以防止过度粘结,但它也可能过于僵硬,不能粘合,无法进行均匀的分离。我们已经实现了小至10纳米的分离结构,研究的宽度范围从2-20μm18。在这个限制中,人们不得不担心硅表面的短距离变化,这些变化可以通过原子力显微镜18绘制出来。

还有其他的粘接方法可以考虑。静电粘结可用于玻璃粘结到硅。这个过程更适合在小区域上粘接,因为一个人在高压下启动与电极的结合,粘合波从表面最接近的地方开始。因此,粘合波在晶圆表面不对称。我们试验的另一种结合技术也有类似的问题。在我们早期的粘合过程中,我们使用钳子从微清洁室中拾取晶圆,从而启动了粘合。这不能令人满意。因此,如前所述,我们开始使用支架,并启动使用球压机的粘合。这一步骤也可以改进,因为我们还没有探索最佳球刚度和压力安排的参数。

硅的整体成功结合必须从异常平整的晶圆开始。我们的被指定为平面与1μm超过整个5厘米的大小。由于我们已经间隔了两个晶圆,只要接近30纳米,人们可以看到,必须有大量的变形晶圆,因为他们弯曲,以实现这种分离。这表明晶圆不能太厚。自从我们成功利用 375 μm 以来,我们一直没有探索晶圆厚度的变化。

小腔也可以使用阳性粘合的过程,使用玻璃19或玻璃硅20。这些技术在30纳米至11 μm范围内产生了平面腔。这些结构的横截面比我们制造的小一个数量级以上的细胞,0.2-0.7厘米2与12厘米2。它们也可以在没有支持站的情况下制造,因为使用更厚的玻璃和硅。因此,虽然他们的技术代表了实现微到纳米流体的另一种可行的方法,但在我们看来,直接晶圆与两个晶圆图案的可能性结合是一种更可变的技术,它允许形成二维、一维和零维结构。迪莫夫等人的细胞19和杜等人。20不适合我们自己的测量。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

我们没有什么可透露的。

Acknowledgments

这项工作由NSF赠款DMR-0605716和DMR-1101189资助。此外,康奈尔纳米尺度科技中心被用来生长和模式氧化物。我们感谢他们的帮助。我们中的一个FMG感谢莫蒂·拉尔·鲁斯特吉教授的支持。

Materials

Name Company Catalog Number Comments
SmartCut North American Tool FL 130 Not much is needed per cell. Smaller sizes are available.
Silicon Wafers Semiconductor Processing Co There are many suppliers. Pay attention to thickness and thickness variation when ordering.
Deionized Water General Availability
Peroxide General Availability
Hydrochloric Acid General Availability
Ammonium Hydroxide General Availability
Nitrogen Gas General Availability
Helium Gas General Availability
Diamond Paste Beuler Metadi II e.g. 406533032
Diamond Drills Starlite e.g. 115010
Pyrex Dishes General Availability
Filter Paper Whatman 1001-110
Acetone General Availability
Methanol General Availability
Quartz tubes for flushing furnace General Availability
Rubber vacuum hose General Availability

DOWNLOAD MATERIALS LIST

References

  1. Gasparini, F. M., Kimball, M. O., Mooney, K. P., Diaz-Avila, M. Finite-size scaling of He-4 at the superfluid transition. Rev. Mod. Phys. 80, 1009-1059 (2008).
  2. Mehta, S., Kimball, M. O., Gasparini, F. M. Superfluid transition of He-4 for two-dimensional crossover, heat capacity, and finite-size scaling. J. Low Temp. Phys. 114, 467-521 (1999).
  3. Reppy, J. D. Superfluid-Helium in Porous-Media. J. Low Temp. Phys. 87, 205-245 (1992).
  4. Mehta, S., et al. Silicon wafers at sub-mu m separation for confined He-4 experiments. Czech. J. Phys. 46, 133-134 (1996).
  5. Tong, Q. Y., Cha, G. H., Gafiteanu, R., Gosele, U. Low-Temperature Wafer Direct Bonding. J. Microelectromech. S. 3, 29-35 (1994).
  6. Tong, Q. Y., Gosele, U. Semiconductor Wafer Bonding - Recent Developments. Mater. Chem. Phys. 37, 101-127 (1994).
  7. Gosele, U., Tong, Q. Y. Semiconductor wafer bonding. Annu. Rev. Mater. Sci. 28, 215-241 (1998).
  8. Rhee, I., Petrou, A., Bishop, D. J., Gasparini, F. M. Bonding Si-Wafers at Uniform Separation. Physica B. 165, 123-124 (1990).
  9. Rhee, I., Gasparini, F. M., Petrou, A., Bishop, D. J. Si Wafers Uniformly Spaced - Bonding and Diagnostics. Rev. Sci. Instrum. 61, 1528-1536 (1990).
  10. Perron, J. K., Kimball, M. O., Mooney, K. P., Gasparini, F. M. Critical behavior of coupled 4He regions near the superfluid transition. Phys. Rev. B. 87, (2013).
  11. Perron, J., Gasparini, F. Specific Heat and Superfluid Density of 4He near T λ of a 33.6 nm Film Formed Between Si. , 1-10 (2012).
  12. Perron, J. K., Gasparini, F. M. Critical Point Coupling and Proximity Effects in He-4 at the Superfluid Transition. Phys. Rev. Lett.. 109, (2012).
  13. Gasparini, F. M., Kimball, M. O., Mehta, S. Adiabatic fountain resonance for He-4 and He-3-He-4 mixtures. J. Low Temp. Phys. 125, 215-238 (2001).
  14. Corruccini, R. J., Gniewek, J. J. Thermal expansion of technical solids at low temperatures; a compilation from the literature. U.S. Dept. of Commerce, National Bureau of Standards. , (1961).
  15. Kahn, H., Deeb, C., Chasiotis, I., Heuer, A. H. Anodic oxidation during MEMS processing of silicon and polysilicon: Native oxides can be thicker than you think. J. Microelectromech. S. 14, 914-923 (2005).
  16. Tong, Q. Y., Gosele, U. Thickness Considerations in Direct Silicon-Wafer Bonding. J. Electrochem. Soc. 142, 3975-3979 (1995).
  17. Corbino, O. M. Azioni Elettromagnetiche Doyute Agli Ioni dei Metalli Deviati Dalla Traiettoria Normale per Effetto di un Campo. Nuovo Cim. 1, 397-420 (1911).
  18. Diaz-Avila, M., Kimball, M. O., Gasparini, F. M. Behavior of He-4 near T-lambda in films of infinite and finite lateral extent. J. Low Temp. Phys. 134, 613-618 (2004).
  19. Dimov, S., et al. Anodically bonded submicron microfluidic chambers. Rev. Sci. Instrum. 81, (2010).
  20. Duh, A., et al. Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments. J. Low Temp. Phys. 168, 31-39 (2012).

Tags

物理,第83期,硅直接晶圆结合,纳米尺度,粘结晶圆,硅晶圆,密闭液体,石版画技术
通过硅直接晶圆粘接制造均匀纳米级腔
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Thomson, S. R. D., Perron, J. K.,More

Thomson, S. R. D., Perron, J. K., Kimball, M. O., Mehta, S., Gasparini, F. M. Fabrication of Uniform Nanoscale Cavities via Silicon Direct Wafer Bonding. J. Vis. Exp. (83), e51179, doi:10.3791/51179 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter