Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

Elektronanofasergerüste mit Abstufungen in Fiber-Organisation

Published: April 19, 2015 doi: 10.3791/52626

Summary

Hier präsentieren wir ein Protokoll zur elektroNanoFaserGerüste mit abgestuften Organisation der Fasern herzustellen und zu erforschen ihre Anwendungen bei der Regulierung der Zellmorphologie / Ausrichtung. Farbverläufe in Bezug auf physikalische und chemische Eigenschaften der Nanofasergerüste bieten eine Vielzahl von Anwendungen im Bereich der Biomedizin.

Introduction

Nanofasern sind eine beliebte Dienstprogramm für das Tissue Engineering die aufgrund ihrer Fähigkeit, die extrazelluläre Matrix in der Struktur und der relativen Größe 1 nachahmen. Jedoch können einige native Gewebe Schnittstellen wie die Sehne-Knochen-Insertionsstelle, enthält Kollagenfasern, das eine variable Organisationsstruktur, die in Ausrichtung hin zunimmt Sehne und nimmt an der Knochenstelle 2-5 aufweisen. Also, für eine effektive Regeneration der Gewebe gibt es eine Notwendigkeit, ein Gerüst, das diesen strukturellen Gradienten effektiv nachahmen herzustellen.

Zuvor hat es Forschung zu langsamen Veränderungen in der Fasermasse durchgeführt, und zwar, Mineralgehalt 6. Allerdings, wieder die Strukturkomponente des Bindegewebes bleibt weitgehend unerforscht. Eine frühere Studie geprüft morphologischen Gradienten durch die Untersuchung der Wirkung der Oberflächen Siliciumdioxid Teilchendichte auf die Proliferation von Ratten-Schädel Osteoblasten und fanden ein inverse Verhältnis zwischen Kieselsäure Teilchendichte und Zellproliferation 7. Aber die morphologischen Veränderungen, die in früheren Arbeiten vermittelten Zellproliferation waren meist verwandten Oberflächenrauhigkeit fehlt die Fähigkeit, in Nachahmung Faser organisatorische Veränderungen 7,8. Eine neuere Studie versucht, ein Gerüst, das die einzigartigen Kollagenfaserorientierungen durch die Verwendung eines neuartigen Kollektor zum Elektro 9 nachgeahmt herzustellen. Während dieser Studie gelungen, ein Gerüst mit beiden ausgerichtet und Wirrfasern, versäumt es, die schrittweise Veränderung der nativen Geweben ausgestellt imitieren. Auch bei der Herstellung von Einzelkomponenten, mit einem sofortigen Wechsel von der willkürlichen Orientierung ausgerichtet ist, die biomechanischen Eigenschaften dieses Gerüst deutlich zurückgegangen. Keine frühere Arbeit ist es gelungen, zutreffend Nanofasergerüste mit kontinuierlichen Abstufungen in der Faserorientierungen von fluchtenden und zufälligen erzeugen. Unsere aktuelle Studie hat erfolgreiche Erholung der Nanofasergerüste gezeigtmit Abstufungen in Faser-Organisation, die möglicherweise nachahmen kann das native Kollagen Organisation Sehne-Knochen-Insertion 10. Diese Arbeit zielt darauf ab, die für die Herstellung von Nanofasergerüste mit einer Struktur, die sehr ähnlich ist, dass der Faser-Organisation in der Landes Sehnen-Knochen-Gewebe-Grenzfläche verwendeten Protokolle zu präsentieren.

Gradient Nanostrukturen möglicherweise weitreichenden Anwendungen in einer Vielzahl von Bereichen. Wir konzentrierten uns auf die Anwendungen auf Tissue Engineering der Sehne-Knochen-Insertionsstelle durch die Kombination unserer Gerüste mit Fettgewebe gewonnene Stammzellen (ADSCs), die bereits für die Geweberegeneration auf verschiedenen Substraten 11-14 eingesetzt werden. Darüber hinaus sind ADSCs sehr ähnlich in der Natur, um Stammzellen des Knochenmarks hinsichtlich der Multipotenz und ihre Ressourcen reichlich vorhanden ist, die mit einem einfachen Fettabsaugung 15,16 geerntet werden können. Seeding diese Zellen auf Nanofasergerüste abgestuft weitere Verbesserung ihrer tisklagen Ingenieuranwendungen, indem es für die gesteuerte Verteilung der Zellen, die potentiell in verschiedenen Geweben differenzieren können. Zusätzlich zum Impfen Stammzellen können Nanofasern mit Signalmolekülen zur Regulierung der zellulären Antwort eingekapselt werden. Koppeln Nanoverkapselung mit der organisatorischen Gradienten dieser Gerüste ermöglicht die Untersuchung von Zellverhalten oder mögliche Implantatdesigns und Beschichtungen. Verkapselung von funktionellen Molekülen, wie morphogenetisches Knochenprotein 2 (BMP-2), von dem gezeigt wurde, um die Osteoblasten-Differenzierung 15,16 induzieren könnten weitere Verbesserung der Gewebezüchtung dieser Gerüste 10.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. Herstellung der Lösung

  1. Es wird eine Lösung von Poly (ε-caprolacton) (PCL) (M w = 80.000 g / mol) bei einer ungefähren Konzentration von 100 mg / ml. Löse PCL in einem Gemisch von Dichlormethan (DCM) und N, N-dimethlyformamide (DMF) in einem Verhältnis von 4: 1 (v / v) mit einer Konzentration von 10% (w / v).
  2. Legen Sie die Lösung in einem 20 ml Glasröhrchen zum Mischen. Platzieren Glasrohr in Ultraschallreiniger für 30 Minuten oder bis die Lösung durchlässig ist.

2. Geräte Vorbereitung

  1. Fügen Sie den PCL-Lösung vorbereitet in eine 5-ml-Spritze mit einer 21-Gauge-stumpfe Nadel.
  2. Platzieren Spritzenpumpe in vertikaler Elektrospinnposition gemäß Figur 1.
  3. Verwenden Sie ein Stahl-Lücke Sammler Edelstahl mit einem offenen Raum von 2 cm x 5 cm für die ausgerichtete Fasersubstrat. Platzieren Sie den Sammler 12 cm von der Nadelspitze.
  4. Verbinden Sie den Gleichstrom (DC) Hochspannungsnetzteil an dieNadel und erden Sie die Sammler. Stellen Sie sicher, dass der Kollektor ist einzeln ohne Kontakt zur anderen Laborgeräten geerdet.

3. Das Elektro

  1. Set Spritzenpumpe auf 1,50 ml / h, bis die Tröpfchen bilden an der Nadelspitze sofort ersetzt werden, wenn entfernt. Dann stellen Sie die Durchflussrate auf 0,50 ml / h.
  2. Schalten Sie die Spannung Betreiber bis 12 kV.
  3. Elektrospinnen, bis die uniaxial ausgerichteten Fasern vollständig zu bedecken die Lücke auf dem Sammler.
  4. Leim auf die Kanten einer Glasplatte und Übertragung der Fasern von dem Spalt Kollektor mit der Glasplatte. Legen der Glasplatte auf der Oberseite von einem Stück Aluminiumfolie, die die gleiche Größe wie die Glasplatte und ist geerdet.
  5. Positionieren Sie die zweite Spritze Kollektor nach 3.
  6. Bringen Sie die Kunststoffmaske zum zweiten Spritzenpumpe und positionieren 2 mm oberhalb des Kollektors.
  7. Hinzufügen Coumarin 6 bei 1% (w / w) in der PCL-Lösung, wenn nanoencapsulation ist desired- und mische bis die Lösung durchlässig ist.
  8. Laden Sie den PCL oder PCL / Cumarin 6 Lösung in eine 5 ml Nadel mit einem stumpfen 21-Gauge-Nadel. Stellen vertikale Pumpen bis 0,50 ml / h und horizontal auf 9 ml / h oder bei einer ungefähren Geschwindigkeit von 1 mm / min zu ziehen.
  9. Elektrospinnen, bis die Maske fast vollständig aus dem Kollektor mit dem Randbereich nach wie vor unter der Maske bewegt, aber.

4. Fasercharakterisierung

  1. Prüfmuster mit doppelseitige leitende Band an der metallischen Bolzen und Mantel mit Platin für 40 sec mit einem Sputter-Coater bei 40 mA.
    1. Untersuchen Fasern durch Rasterelektronenmikroskop (SEM) nach unseren früheren Studien 17,18.
    2. Sammeln Bilder bei einer Beschleunigungsspannung von 15 kV.
  2. Durchführen von schnellen Fourier-Transformation (FFT) auf einem getrennten Faserprobe die Faserausrichtung zu messen. Die detaillierten Angaben zum Messfaserausrichtung durch FFT kann beziehen to früheren Studien 19,20.

5. Seeding Stammzellen.

  1. Sterilisation der Faserproben durch Eintauchen in eine 70% Ethanollösung für 2 Std. Dann waschen die Fasern mit destilliertem Wasser, um jegliche Verunreinigungen zu entfernen.
  2. Erhalten menschlichen ADSCs und Kulturzellen in einem 25 cm 2 -Kolben bei 37 ° C in einer Atmosphäre von 95% Luft / 5% CO 2. Ändern Sie jeden zweiten Tag 10 das Zellkulturmedium.
  3. Trypsinieren die Zellen und die Anzahl der Zellen. Genauer gesagt, nehmen Sie das Kulturmedium aus der Zellkulturflasche und waschen Sie die Zellen mit phosphatgepufferter Kochsalzlösung (PBS) zweimal. Dann fügen Sie 1 m l einer 0,25% Trypsin-EDTA-Lösung (pre-warm im Wasserbad auf 37 ° C), um die Zellschicht zu bedecken und die Flasche in der Zellkulturbrutschrank inkubieren für 2-3 Minuten. 4 ml Kulturmedium und waschen Sie alle Zellen von der Oberfläche durch Pipettieren des Mediums über die gesamte Oberfläche. Zentrifugieren Sie die Zellsuspension und redispergieren the Zellpellet in Kulturmedium. Count-Zellen über Hämazytometer. Seed etwa 1 × 10 4 Zellen zur Nanofasergerüst in einem 35 mm -Kultur Schale gelegt und Inkubation für 3 und 7 Tagen.
  4. Stain-Zellen unter Verwendung von Fluoresceindiacetat (5 mg / ml in Aceton) (FDA) dann bild die Proben unter Verwendung eines Fluoreszenz-Mikroskops. Genauer gesagt, werden 100 ul des FDA-Lösung in die Kulturschale pipettieren und 30 min. Dreimal vor Fluoreszenzabbildung waschen Zellen mit PBS. Analysieren Zellorientierung durch eine kundenspezifische Matte-lab-Programm auf der Grundlage unserer bisherigen Studien 10.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Unter Verwendung dieses Protokolls wurde eine Fasermatte mit einer organisatorischen Gradienten gebildet. 3 zeigt die REM-Bilder an verschiedenen Stellen auf der Nanofaser-Gerüst entnommen. Qualitativ kann bestimmt werden, dass es einen Übergang von der uniaxial ausgerichteter Fasern mit einem 0 mm (3A) zu einer zufälligen Fasersortiment auf 6 mm (Figur 3D). Die FFT liefert einen quantitativen Wert auf die Faserausrichtung, Einzelheiten über die quantitativen Prozesse sind detailliert hier 19. Fasern bei 0 mm weisen eine FFT, die Faserausrichtung zeigt, und 6 mm die FFT-Muster bedeutet eine zufällige Orientierung. Es gibt eine klare Progression in den SEM-Aufnahmen (Figur 3) aus einer ausgerichteten Faser-Organisation zu einer zunehmend Wirrfaserabscheidung (3B - C).

ADSCs unterzog morphologischen Veränderungen auf der Grundlage ihrer Lage im Nanofasergerüst, Fig. 4 (4A - D) entnommen und 7 Tagen (Abbildung 4E - H). Die Verteilung des Stammzellenwinkel wurde quantitativ durch eine angepasste MATLAB-Programm bewertet und mit Hilfe der Kolmogorov-Smirnov-Test bei verschiedenen Abständen analysiert. 4I zeigt die Verteilung der Zell Winkel an verschiedenen Standorten. Bei 0 mm, oder in der Region der ausgerichteten Fasern, 70% der Zellen erschienen innerhalb von 20 ° von der Achse der Nanofaserherstellung. Demgegenüber ausgesät die ADSCs den Zufallsabschnitte der Fasergerüste fehlte dieses Organisationsstruktur, wobei nur 20% der Zellen innerhalb von 20 ° erscheint. Schließlich wird die Bildung des chemischen Gradienten mit Coumarin 6 - geladen wurde PCL-Fasern mit Fluoreszenz-Mikroskopie untersucht. Die chemische Gradienten wurde qualitativ bestätigt mit dem mikroskopische Aufnahme (5A). Das Bild bestätigt die zunehmende chemical Konzentration über dem Gerüst, die durch die stetig zunehmende Intensität des Fluoreszenzbildes ausgestellt ist. Das Diagramm der Fluoreszenzintensität (Bild J) (5B) bestätigt die Steigung der chemischen Konzentration durch einen linearen Wachstums auf dem Gerüst.

Abbildung 1
Figur 1: zeigt die schematische Darstellung der Versuchsanordnung zur Herstellung der uniaxial ausgerichtete Fasersubstrat.

Abbildung 2
Abbildung 2: (a) zeigt die Platzierung der zweiten Spritzenpumpe zur Herstellung des Gradienten Gerüst. (B) Platzierung der Maske über dem Sammler. Diese Zahl hat sich von [10] Macromol nachgedruckt. Biosci., 12, Xie, J., Ma, B., Michael, PL & Shuler, FD FabriKation Nanofasergerüste mit Abstufungen in Fiber-Organisation und deren Anwendungsmöglichkeiten. 1336-1341, Copyright 2012, mit Genehmigung von Wiley-VCH.

Figur 3
Abbildung 3: REM-Bilder der Nanofaser PCL abgestuft Gerüst bei 0 mm (A), 2 mm (B), 4 mm (C) und 6 mm (D). Die sekundären Bilder Fourier schnelle Übertragungsmuster (FFT). Muster (A) ist, dass der ausgerichteten Fasern, (D) legt nahe, Wirrfaserablagerung. Diese Zahl hat sich von [10] Macromol nachgedruckt. Biosci., 12, Xie, J., Ma, B., Michael, PL & Shuler, FD Herstellung von Nanofasergerüste mit Abstufungen in Fiber-Organisation und deren Anwendungsmöglichkeiten. 1336-1341, Copyright 2012, mit Genehmigung von Wiley-VCH.

Abbildung 4: Fluoreszenzmikroskopische Bilder zeigen ADSCs nach Inkubation für 3 Tage (A - D) und 7 Tagen (E - H). Bilder zeigen die verschiedenen Morphologien ADSCs an verschiedenen Orten des abgestuften Schafott. (I): Die Verteilung der Zellwinkeln an verschiedenen Stellen der Gerüste. Zellen wurden viel mehr zwischen 20 ° von der Achse der Nanofasern Ausrichtung auf ausgerichteten Fasern (0 mm) konzentriert. Diese Zahl hat sich von [10] Macromol nachgedruckt. Biosci., 12, Xie, J., Ma, B., Michael, PL & Shuler, FD Herstellung von Nanofasergerüste mit Abstufungen in Fiber-Organisation und deren Anwendungsmöglichkeiten. 1336-1341, Copyright 2012, mit Genehmigung von Wiley-VCH.

Abbildung 5
FiguWieder 5: (A) Fluoreszenzmikroskopische Aufnahme von Cumarin 6 eingekapselten Fasern. (B) Die Grafik zeigt die Fluoreszenzintensität auf dem Schafott. Der lineare Anstieg bedeutet eine allmähliche Veränderung in der chemischen Konzentration durch das Schafott. Diese Zahl hat sich von [10] Macromol nachgedruckt. Biosci., 12, Xie, J., Ma, B., Michael, PL & Shuler, FD Herstellung von Nanofasergerüste mit Abstufungen in Fiber-Organisation und deren Anwendungsmöglichkeiten. 1336-1341, Copyright 2012, mit Genehmigung von Wiley-VCH.

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgments

Diese Arbeit wurde von der Anschubfinanzierung von der University of Nebraska Medical Center und National Institute of Health (Förderkennzeichen 1R15 AR063901-01) unterstützt.

Materials

Name Company Catalog Number Comments
Polycaprolactone Sigma-Aldrich 440744
N,N-Dimethlyformamide Fisher Chemical D-119-1
Dichloromethane Fisher Chemical AC61093-1000
Coumarin 6 Sigma-Aldrich 546283
Adipose Derived Stem Cells Cellular engineering Technologies HMSC.AD-100
Fetal Bovine Serum Life Technologies 26140-111
Fluorescein Diacetate Sigma-Aldrich F7378
Ethanol Sigma-Aldrich E7023
Trypsin-EDTA Invitrogen 25300-054
α-Modified Eagle's Medium Invitrogen a10490-01
Acetone Fisher Scientific s25120a
Phosphate Buffered Saline Invitrogen 10010023
Glass Slides VWR international, LLC 101412-842
Syringe Pump Fisher Scientific 14-831-200 Single syringe
Ultrasonic Cleaner Branson 1510
High Voltage DC Power Supply Gamma High Voltage Research ES30
Scanning Electron Microscope FEI Nova 2300
Fluorescence Microscope Zeiss Axio Imager 2

DOWNLOAD MATERIALS LIST

References

  1. Xie, J., Li, X., Xia, Y. Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun. 29 (22), 1775-1792 (2008).
  2. Genin, G. M., et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97 (4), 976-985 (2009).
  3. Thomopoulos, S., Marquez, J. P., Weinberger, B., Birman, V., Genin, G. M. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39 (10), 1842-1851 (2006).
  4. Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M., Soslowsky, L. J. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21 (3), 413-419 (2003).
  5. Thomopoulos, S., Genin, G. M., Galatz, L. M. The development and morphogenesis of the tendon-to-bone insertion - What development can teach us about healing. Musculoskelet Neuronal Interact. 10 (1), 35-45 (2010).
  6. Li, X., Xie, J., Lipner, J., Yuan, X., Thomopoulos, S., Xia, Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9 (7), 2763-2768 (2009).
  7. Kunzler, T. P., Huwiler, C., Drobek, T., Vörös, J., Spencer, N. D. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials. 28 (33), 5000-5006 (2007).
  8. Huwiler, C., Kunzler, T. P., Textor, M., Vörös, J., Spencer, N. D. Functionalizable nanomorphology gradients via colloidal self-assembly. Langmuir. 23 (11), 5929-5935 (2007).
  9. Xie, J., et al. 'Aligned-to-random' nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale. 2 (6), 923-926 (2010).
  10. Xie, J., Ma, B., Michael, P. L., Shuler, F. D. Fabrication of nanofiber scaffolds with gradations in fiber organization and their potential applications. Macromol. Biosci. 12 (10), 1336-1341 (2012).
  11. James, R., Kumbar, S. G., Laurencin, C. T., Balian, G., Chhabra, A. B. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed. Mater. 6 (2), 025011 (2011).
  12. Bodle, J. C., Hanson, A. D., Loboa, E. G. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. Tissue Eng. Part B Rev. 17 (3), 195-211 (2011).
  13. Lee, J. H., Rhie, J. W., Oh, D. Y., Ahn, S. T. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold. Biochem. Biophys. Res. Commun. 370 (3), 456-460 (2008).
  14. Tapp, H., Hanley, E. N., Patt, J. C., Gruber, H. E. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp. Biol. Med. 234 (1), 1-9 (2009).
  15. Gimble, J. M., Guilak, F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 5 (5), 362-369 (2003).
  16. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  17. Xie, J., et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 30 (3), 354-362 (2009).
  18. Xie, J., MacEwan, M. R., Li, X., Sakiyama-Elbert, S. E., Xia, Y. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano. 3 (5), 1151-1159 (2009).
  19. Ayres, C., et al. Modulation of anisotropy in electrospun tissue engineering scaffolds: analysis of fiber alignment by the fast Fourier transform. Biomaterials. 27 (32), 5524-5534 (2006).
  20. Ayres, C., et al. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Poly. Ed. 19 (5), 603-621 (2008).

Tags

Bioengineering Elektrospinnen Nanofasergerüste Abstufungen Stammzellen Tissue Engineering Nanoverkapselung
Elektronanofasergerüste mit Abstufungen in Fiber-Organisation
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Khandalavala, K., Jiang, J., Shuler, More

Khandalavala, K., Jiang, J., Shuler, F. D., Xie, J. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization. J. Vis. Exp. (98), e52626, doi:10.3791/52626 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter