Zinc-finger domains are intrinsically cell-permeable and capable of mediating protein delivery into a broad range of mammalian cell types. Here, a detailed step-by-step protocol for implementing zinc-finger technology for intracellular protein delivery is presented.
Due to their modularity and ability to be reprogrammed to recognize a wide range of DNA sequences, Cys2-His2 zinc-finger DNA-binding domains have emerged as useful tools for targeted genome engineering. Like many other DNA-binding proteins, zinc-fingers also possess the innate ability to cross cell membranes. We recently demonstrated that this intrinsic cell-permeability could be leveraged for intracellular protein delivery. Genetic fusion of zinc-finger motifs leads to efficient transport of protein and enzyme cargo into a broad range of mammalian cell types. Unlike other protein transduction technologies, delivery via zinc-finger domains does not inhibit enzyme activity and leads to high levels of cytosolic delivery. Here a detailed step-by-step protocol is presented for the implementation of zinc-finger technology for protein delivery into mammalian cells. Key steps for achieving high levels of intracellular zinc-finger-mediated delivery are highlighted and strategies for maximizing the performance of this system are discussed.
Highly efficient and versatile protein delivery strategies are critical for many basic research and therapeutic applications. The direct delivery of purified proteins into cells represents one of the safest and easiest methods for achieving this.1,2 Unlike strategies that rely on gene expression from nucleic acids,3-5 protein delivery poses no risk of insertional mutagenesis, is independent of the cellular transcription/translation machinery and allows for an immediate effect. However, the lack of simple and generalizable methods for endowing cell-penetrating activity onto proteins routinely confounds their direct entry into cells. Current methods for facilitating intracellular protein delivery are based on the use of naturally occurring6-8 or designed cell-penetrating peptides,9-12 supercharged transduction domains,13,14 nanoparticles15 and liposomes,16 virus-like particles17,18 and polymeric microsphere materials.19 Unfortunately, many of these approaches are hampered by low cellular uptake rates,20,21 poor stability,22 inadvertent cell-type specificity,23 low endosomal escape properties24 and toxicity.25 In addition, many protein transduction technologies reduce the bioactivity of the delivered proteins.14
Our laboratory previously demonstrated that zinc-finger nuclease (ZFN) proteins — chimeric restriction endonucleases consisting of a programmable Cys2-His2 zinc-finger DNA-binding protein and the cleavage domain of the FokI restriction endonuclease26-28 — are inherently cell-permeable.29 This surprising cell-penetrating activity was shown to be an intrinsic property of the custom-designed zinc-finger domain, a DNA-binding platform that has emerged as a powerful tool for targeted genome engineering,30-32 and considered to be the result of the constellation of six positively charged residues on the protein surface. Indeed, several DNA-binding proteins, including c-Jun and N-DEK have been shown to possess an innate capacity to cross cell membranes.33 More recently, our laboratory expanded on these results and demonstrated that the cell-penetrating activity of zinc-finger (ZiF) domains could be leveraged for intracellular protein delivery. Genetic fusion of either one- or two-finger ZiF domains to specific protein cargo led to uptake efficiencies that exceeded many conventional cell-penetrating peptide delivery systems.34 Most notably, ZiF-mediated delivery did not compromise the activity of fused enzymatic cargo and facilitated high levels of cytosolic delivery. Collectively, these findings demonstrate the potential of the ZiF domain for facilitating the efficient and facile delivery of proteins, and potentially more diverse types of macromolecules, into cells.
Here, a detailed step-by-step protocol on how to implement ZiF technology for protein delivery in mammalian cells is presented. We previously constructed a suite of one-, two-, three-, four-, five- and six-finger ZiF domains that lack the ability to bind DNA, due to substitution of each of the α-helical DNA-binding residues, but are capable of delivering proteins into cells34 (Figure 1). The production and transduction of Emerald GFP (EmGFP) into HeLa cells using a two-finger ZiF domain is described. This protocol is extensible to almost any protein capable of soluble expression in Escherichia coli and nearly any mammalian cell type. Expected results are provided and strategies for maximizing the performance of this system are also discussed.
1. Cloning
2. Expression and Purification
3. Protein Storage
4. Protein Transduction
Two-finger ZiF-EmGFP fusion proteins can be expressed in E. coli with >95% homogeneity and high yields (>25 mg/ml) (Figure 2). In general, one- and two-finger ZiF fusion proteins can be produced in quantities nearly identical to those of wild-type unmodified protein. However, in some contexts, five- and six-finger ZiF fusion proteins are unable to be produced in yields high enough for downstream applications.
Direct application of two-finger ZiF-EmGFP protein onto HeLa cells for 90 min at 37 °C leads to a dose-dependent increase in EmGFP fluorescence (Figure 3A). Critically, no fluorescence is observed in the absence of the ZiF domain. We previously observed that nearly 100% of cells are fluorescent after treatment with only 2 μM of two-finger ZiF-EmGFP protein, and that HeLa cells treated with ZiF fusion protein are positive for EmGFP fluorescence at protein concentrations as low as 0.25 μM (Figure 3B).
Figure 1. Structure and sequence of zinc-finger protein. (Top) Crystal structure of a single zinc-finger (ZiF) domain. The side chains of the conserved Cys and His residues coordinated with the Zn2+ ion are shown as sticks (PDB ID: 2I13).37 (Bottom) Sequence of the ZiF domain. Arrows and cylinders indicate Β-sheet and α-helix secondary structures, respectively. The α-helical DNA-binding residues that have been substituted with alanine are highlighted pink. Positively charged residues predicted to mediate cell internalization are highlighted light blue. Please click here to view a larger version of this figure.
Figure 2. SDS-PAGE of purified one-, two-, three- and four-finger ZiF-EmGFP fusion proteins. ZiF-EmGFP fusion proteins were expressed in E. coli and purified by Ni-NTA agarose resin. Eluted protein was analyzed for purity by SDS-PAGE using a 4%-20% Tris-Glycine gel. No significant degradation or truncations of ZiF-EmGFP fusion proteins was observed.
Figure 3. ZiF-mediated protein delivery into HeLa cells. (A) Fluorescence intensity of HeLa cells treated with increasing amounts of two-finger ZiF-EmGFP protein. HeLa cells treated with EmGFP protein alone overlap entirely with untreated cells. (B) Normalized fluorescence intensity of HeLa cells treated consecutively with 2 μM of two-finger ZiF-EmGFP protein. Fluorescence intensity was determined by flow cytometry.
Here, a step-by-step protocol for protein delivery using cell-permeable zinc-finger (ZiF) domains is presented. The ZiF domain does not reduce the activity of fused enzymatic cargo34; allows for the production and purification of proteins in yields nearly identical to those observed with unmodified protein; and can transport proteins and enzymes into a wide range of cell types with efficiencies that exceed traditional cell-penetrating peptide or protein transduction domain systems. Together, these findings indicate the broad potential of ZiF domains for mediating direct protein delivery into cells for a wide range of applications.
Maximum protein delivery was previously achieved using only a two-finger ZiF domain, despite the fact that extended arrays of three- and four-finger ZiF domains carry greater positive charge. These findings indicate that ZiF-mediated cell entry might be influenced by factors other than charge, including protein stability or conformational rigidity. ZiF domain-mediated protein delivery was also found to be energy-dependent and thus requires that all cells treated with protein be incubated at 37 °C. Through the usage of small molecule inhibitors of various endocytic pathways, macropinocytosis, and to a lesser extent caveolin-dependent endocytosis, were determined to be the major pathways for ZiF-mediated cell entry.34 Notably, unlike other protein transduction systems, ZiF domains are capable of efficiently escaping endosomes to mediate high levels of cytosolic delivery of the fused macromolecular cargo, underscoring the potential of these domains for achieving robust protein delivery.
In our experience, the seeding density of cells is a critical step for achieving high levels of protein transduction. We recommend treating cells once they reach 80%-90% confluency and previously observed that cells seeded at >95% confluency show sub-optimal transduction capacity, while cells seeded at low densities (<50%) are susceptible to protein-induced toxicity. Importantly, for cell types with high detachment tendencies, cell culture plates pre-coated with poly-lysine are recommended. Poly-lysine facilitates cell attachment through electrostatic interactions with negatively charged cell-surface components. Although the α-helical DNA-binding residues of each ZiF domain have been removed to eliminate any potential for DNA recognition, the cysteine and histidine residues that coordinate with the Zn2+ ion to stabilize the ΒΒα ZiF domain fold remain intact. Thus, we recommend that any storage buffer be supplemented with at least 100 μM of ZnCl2 to maintain protein integrity.
Although the ZiF domain was previously shown to deliver proteins and enzymes into a variety of cell types, the efficiency of ZiF delivery might also be dependent on the both macromolecular cargo and protein concentration. For instance, cells treated with two-finger ZiF-luciferase fusion protein were observed to display maximum luminescence when treated with 0.5 μM protein, with decreased activity at higher concentrations, while cells treated with two-finger EmGFP exhibited a dose-dependent increase in fluorescence intensity up to 8.0 μM protein, and upon consecutive protein treatments. We therefore recommend evaluating the cell penetrating ability of each unique ZiF domain fusion across a range of concentrations.
Finally, although not yet demonstrated, we anticipate that ZiF domain delivery is a highly flexible platform, capable of delivering a diverse array of macromolecules into cells. For example, it may be possible for both DNA and RNA to be chemically functionalized onto the surface of the ZiF domain via a hydrolyzable linker, or transiently transfected into cells by encapsulation of ZiF domains. Additionally, the efficiency of ZiF protein delivery could be further enhanced by rational design efforts focused on surface charge optimization.
The authors have nothing to disclose.
This work was supported by the National Institutes of Health (DP1CA174426 to Carlos F. Barbas) and ShanghaiTech University, Shanghai, China (to J.L). Molecular graphics were generated using PyMol.
XmaI | New England Biolabs | R0180L | |
SacI | New England Biolabs | R0156L | |
Expand High Fidelity PCR system | Roche | 11759078001 | |
dNTPs | New England Biolabs | N0446S | |
4-20% Tris-Glycine Mini protein gels, 1.5 mm, 10 wells | Life Technologies | EC6028BOX | |
2x Laemmli Sample Buffer | BioRad | 161-0737 | |
T4 DNA Ligase | Life Technologies | 15224-017 | |
BL21 (DE3) Competent E. coli | New England Biolabs | C2527I | |
IPTG | Thermo Scientific | R0391 | |
Zinc Chloride | Sigma-Aldrich | 208086-5G | |
Kanamycin Sulfate | Fisher Scientific | BP906-5 | |
Glucose | Sigma-Aldrich | G8270-100G | |
Tris Base | Fisher Scientific | BP152-25 | |
Sodium Chloride | Sigma-Aldrich | S9888-25G | |
DTT | Fisher Scientific | PR-V3151 | |
PMSF | Thermo Scientific | 36978 | |
Ni-NTA Agarose Resin | QIAGEN | 30210 | |
Glycerol | Sigma-Aldrich | G5516-500ML | |
Imidazole | Sigma-Aldrich | I5513-25G | |
Amicon Ultra-15 Centrifugal Filter Units | EMO Millipore | UFC900324 | |
DMEM | Life Technologies | 11966-025 | |
Fetal Bovine Serum | Life Technologies | 10437-028 | |
Antibiotic-Antimycotic | Life Technologies | 15240-062 | |
24-Well Flat Bottom Plate | Sigma-Aldrich | CLS3527-100EA | |
Poly-Lysine | Sigma-Aldrich | P7280 | |
DPBS, No Calcium, No Magnesium | Life Technologies | 21600010 | |
Heparan Sulfate | Sigma-Aldrich | H4777 | |
Trypsin | Life Technologies | 25300054 | |
Hela cells | ATCC | CCL-2 | |
Nano Drop ND-1000 spectrophotometer | Thermo Fisher Scientific | N/A | |
QIAquick PCR Purification Kit | QIAGEN | 28104 | |
QIAquick Gel Extraction Kit | QIAGEN | 28704 |