Summary

蛋白质直接送货到哺乳动物细胞利用细胞渗透半胱氨酸<sub> 2</sub> -His<sub> 2</sub>锌指域

Published: March 25, 2015
doi:

Summary

锌指结构域是本质细胞渗透性和能够介导蛋白输送到广泛的哺乳动物细胞类型的。这里,一个详细的一步一步的协议用于实现锌指技术为细胞内蛋白输送呈现。

Abstract

Due to their modularity and ability to be reprogrammed to recognize a wide range of DNA sequences, Cys2-His2 zinc-finger DNA-binding domains have emerged as useful tools for targeted genome engineering. Like many other DNA-binding proteins, zinc-fingers also possess the innate ability to cross cell membranes. We recently demonstrated that this intrinsic cell-permeability could be leveraged for intracellular protein delivery. Genetic fusion of zinc-finger motifs leads to efficient transport of protein and enzyme cargo into a broad range of mammalian cell types. Unlike other protein transduction technologies, delivery via zinc-finger domains does not inhibit enzyme activity and leads to high levels of cytosolic delivery. Here a detailed step-by-step protocol is presented for the implementation of zinc-finger technology for protein delivery into mammalian cells. Key steps for achieving high levels of intracellular zinc-finger-mediated delivery are highlighted and strategies for maximizing the performance of this system are discussed.

Introduction

高效,多功能的蛋白质交付策略是许多基础研究和治疗应用的关键。直接输送纯化的蛋白质导入细胞代表一个的最安全和最容易的方法来实现这一点。1,2-不同于依靠从核酸的基因表达的策略,3-5蛋白输送带来插入突变的危险,是独立的细胞转录/翻译机制,并允许立竿见影的效果。然而,由于缺乏简单,可推广的方法赋予细胞渗透活性的蛋白质上经常混淆其直接进入细胞。目前的方法用于促进细胞内蛋白质递送的基于使用的天然存在的6-8或设计的细胞穿透肽,9-12增压转导结构域,13,14纳米颗粒15和脂质体,16病毒样颗粒17,18 </SUP>和聚合物微球材料。19不幸的是,许多这些方法是由低细胞摄取速率,20,21稳定性差,22无意细胞类型特异性,低23内体逃逸属性24和 ​​毒性。25除了受阻,许多蛋白质转导技术减少递送蛋白质的生物活性。14

我们实验室以前表明,锌指核酸酶(ZFN)的蛋白质-嵌合限制性内切酶选自由可编程的Cys 2 -His 2锌指DNA结合蛋白和的FokⅠ限制性内切酶26-28的切割结构域的-是固有小区可渗透的。29这种令人惊奇的细胞穿透活性被证明是定制设计的锌指结构域,即已经成为一个强大的工具用于靶向基因组中的连接DNA结合平台的固有性质工程设计,30-32,被认为是六对蛋白质表面带正电荷的残基的构象的结果。实际上,一些DNA结合蛋白,包括c-Jun的和N-DEK已显示具有穿过细胞膜的固有能力。33最近,我们的实验室扩展了这些结果,并表明,锌的细胞穿透活性手指(ZIF)域,可以利用细胞内蛋白质传递。遗传融合任一个或两个手指ZIF域特异性蛋白货物导致摄取效率超出许多常规细胞穿透肽递送系统34最值得注意的是,ZIF介导的递送没有妥协的稠酶促货物的活性和促进高水平的胞浆交付。总的来说,这些研究结果表明该ZIF域的电位用于促进高效和轻便递送的蛋白质,和宏观的潜在更加多样类型分子进入细胞。

在这里,一个详细的一步一步的协议,就如何落实ZIF技术蛋白交付在哺乳动物细胞中被提出。我们以前建造一套一,二,三,四,五,六指缺乏结合DNA,由于每个α螺旋DNA结合残基的替代能力ZIF域,但能够提供蛋白质进入细胞34( 图1)。翡翠绿色荧光蛋白(EmGFP)的制备和转导入用两个手指ZIF域HeLa细胞进行说明。这个协议是可扩展的,以几乎能够在大肠杆菌和可溶性表达几乎任何哺乳动物细胞类型的任何蛋白质。提供预期结果,并且还讨论了用于最大化该系统的性能的策略。

Protocol

1.克隆获取已亚克隆入PET-28的表达载体系统和可应要求提供(PET-2F-ZIF)丙氨酸取代的两个手指ZIF域。34 PCR扩增EmGFP从质粒翡翠-的pBAD与引物的5'XmaI-EmGFP(5'-GGAAATTG CCCGGG ATGGTGAGCAAGGGCGAGGAGCTGTTCAC-3'; XMA我粗体位点)和3'SacI位-EmGFP(5'-CGGATCT GAGCTC TTACTTGTACAGCTCGTCCATGCCGAG-3' ;大胆囊我的网站)。 使用5纳克模板DNA,10微升10X?…

Representative Results

二指ZIF-EmGFP融合蛋白可以在大肠杆菌中表达大肠杆菌具有> 95%均一性和高的产率(> 25毫克/毫升)( 图2)。在一般情况下,一个和两个手指ZIF融合蛋白可在数量几乎相同的那些野生型未修饰蛋白的制备。然而,在某些情况下,五元和六手指ZIF融合蛋白不能在产量为下游应用高至足以进行制造。 在37℃下直接应用二指ZIF-EmGFP蛋白到HeLa细胞90分钟?…

Discussion

这里,一步一步协议用于使用细胞渗透性锌指(ZIF)结构域蛋白输送呈现。该ZIF域不降低融合酶的货物34活动;允许生产和收益率几乎相同的那些与未修饰蛋白观察到的蛋白质的纯化;和可运输的蛋白质和酶,用于广泛范围的细胞类型,效率超过传统的细胞穿透肽或蛋白质转导结构域的系统。总之,这些发现表明ZIF域的广泛的潜在介导的直接蛋白输送到细胞内的广泛的应用范围。

<p class="j…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院(DP1CA174426卡洛斯F.巴尔巴斯)和上海科技大学,上海,中国(以JL)的支持。使用PyMOL的生成分子图形。

Materials

XmaI New England Biolabs R0180L
SacI New England Biolabs R0156L
Expand High Fidelity PCR system Roche 11759078001
dNTPs New England Biolabs N0446S
4-20% Tris-Glycine Mini protein gels, 1.5 mm, 10 wells Life Technologies EC6028BOX
2x Laemmli Sample Buffer BioRad 161-0737
T4 DNA Ligase Life Technologies 15224-017
BL21 (DE3) Competent E. coli New England Biolabs C2527I
IPTG Thermo Scientific R0391
Zinc Chloride Sigma-Aldrich 208086-5G
Kanamycin Sulfate Fisher Scientific BP906-5
Glucose Sigma-Aldrich G8270-100G
Tris Base Fisher Scientific BP152-25
Sodium Chloride Sigma-Aldrich S9888-25G
DTT Fisher Scientific PR-V3151 
PMSF Thermo Scientific 36978
Ni-NTA Agarose Resin QIAGEN 30210
Glycerol Sigma-Aldrich G5516-500ML
Imidazole Sigma-Aldrich I5513-25G
Amicon Ultra-15 Centrifugal Filter Units EMO Millipore UFC900324
DMEM Life Technologies 11966-025
Fetal Bovine Serum Life Technologies 10437-028
Antibiotic-Antimycotic  Life Technologies 15240-062
24-Well Flat Bottom Plate Sigma-Aldrich CLS3527-100EA
Poly-Lysine Sigma-Aldrich P7280
DPBS, No Calcium, No Magnesium Life Technologies 21600010
Heparan Sulfate Sigma-Aldrich H4777
Trypsin Life Technologies 25300054
Hela cells ATCC CCL-2
Nano Drop ND-1000 spectrophotometer  Thermo Fisher Scientific N/A
QIAquick PCR Purification Kit QIAGEN 28104
QIAquick Gel Extraction Kit QIAGEN 28704

References

  1. Berg, A., Dowdy, S. F. Protein transduction domain delivery of therapeutic macromolecules. Curr. Opin. Biotechnol. 22, 888-893 (2011).
  2. Lindsay, M. A. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587-594 (2002).
  3. Luo, D., Saltzman, W. M. Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33-37 (2000).
  4. Guo, X., Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45, 971-979 (2012).
  5. Thomas, C. E., Ehrhardt, A., Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346-358 (2003).
  6. Frankel, A. D., Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55, 1189-1193 (1988).
  7. Elliott, G., O’Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88, 223-233 (1997).
  8. Derossi, D., Joliot, A. H., Chassaing, G., Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450 (1994).
  9. Smith, B. A., et al. Minimally cationic cell-permeable miniature proteins via alpha-helical arginine display. J. Am. Chem. Soc. 130, 2948-2949 (2008).
  10. Daniels, D. S., Schepartz, A. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J. Am. Chem. Soc. 129, 14578-14579 (2007).
  11. Karagiannis, E. D., et al. Rational design of a biomimetic cell penetrating peptide library. ACS Nan. 7, 8616-8626 (2013).
  12. Gao, S., Simon, M. J., Hue, C. D., Morrison, B., 3r, S., Banta, An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem. Biol. 6, 484-491 (2011).
  13. Fuchs, S. M., Raines, R. T. Arginine grafting to endow cell permeability. ACS Chem. Biol. 2, 167-170 (2007).
  14. Cronican, J. J., et al. Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem. Biol. 5, 747-752 (2010).
  15. Panyam, J., Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329-347 (2003).
  16. Zelphati, O., et al. Intracellular delivery of proteins with a new lipid-mediated delivery system. J. Biol. Chem. 276, 35103-35110 (2001).
  17. Kaczmarczyk, S. J., Sitaraman, K., Young, H. A., Hughes, S. H., Chatterjee, D. K. Protein delivery using engineered virus-like particles. Proc. Natl. Acad. Sci. U. S. A. 108, 16998-17003 (2011).
  18. Voelkel, C., et al. Protein transduction from retroviral Gag precursors. Proc. Natl. Acad. Sci. U. S. A. 107, 7805-7810 (2010).
  19. Sinha, V. R., Trehan, A. Biodegradable microspheres for protein delivery. J. Control Release. 90, 261-280 (2003).
  20. Liu, J., Gaj, T., Patterson, J. T., Sirk, S. J., Barbas, C. F. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. 9, e85755 (2014).
  21. Ramakrishna, S., et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027 (2014).
  22. Fuchs, S. M., Raines, R. T. Polyarginine as a multifunctional fusion tag. Protein Sci. 14, 1538-1544 (2005).
  23. Mai, J. C., Shen, H., Watkins, S. C., Cheng, T., Robbins, P. D. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 277, 30208-30218 (2002).
  24. Al-Taei, S., et al. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug. Chem. 17, 90-100 (2006).
  25. Jones, S. W., et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093-1102 (2005).
  26. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646 (2010).
  27. Carroll, D. Genome engineering with zinc-finger nucleases. Genetics. 188, 773-782 (2011).
  28. Guo, J., Gaj, T., Barbas, C. F., 3rd, Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol. 400, 96-107 (2010).
  29. Gaj, T., Guo, J., Kato, Y., Sirk, S. J., Barbas, C. F. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods. 9, 805-807 (2012).
  30. Gersbach, C. A., Gaj, T., Barbas, C. F., 3rd, Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309-2318 (2014).
  31. Gaj, T., Gersbach, C. A., Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405 (2013).
  32. Perez-Pinera, P., Ousterout, D. G., Gersbach, C. A. Advances in targeted genome editing. Curr. Opin. Chem. Biol. 16, 268-277 (2012).
  33. Cronican, J. J., et al. A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem. Biol. 18, 833-838 (2011).
  34. Gaj, T., Liu, J., Anderson, K. E., Sirk, S. J., Barbas, C. F., 3rd, Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem. Biol. 9, 1662-1667 (2014).
  35. Radcliff, G., Jaroszeski, M. J. Basics of flow cytometry. Methods Mol. Biol. 91, 1-24 (1998).
  36. Mercer, A. C., Gaj, T., Sirk, S. J., Lamb, B. M., Barbas, C. F. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3, 723-730 (2014).
  37. Segal, D. J., Crotty, J. W., Bhakta, M. S., Barbas, C. F., Horton, N. C. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J. Mol. Biol. 363, 405-421 (2006).

Play Video

Cite This Article
Gaj, T., Liu, J. Direct Protein Delivery to Mammalian Cells Using Cell-permeable Cys2-His2 Zinc-finger Domains. J. Vis. Exp. (97), e52814, doi:10.3791/52814 (2015).

View Video