Summary

在振荡压力灌流器程序大鼠肝脏的脱细胞

Published: August 10, 2015
doi:

Summary

The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.

Abstract

Decellularization and recellularization of parenchymal organs may enable the generation of functional organs in vitro, and several protocols for rodent liver decellularization have already been published. We aimed to improve the decellularization process by construction of a proprietary perfusion device enabling selective perfusion via the portal vein and/or the hepatic artery. Furthermore, we sought to perform perfusion under oscillating surrounding pressure conditions to improve the homogeneity of decellularization. The homogeneity of perfusion decellularization has been an underestimated factor to date. During decellularization, areas within the organ that are poorly perfused may still contain cells, whereas the extracellular matrix (ECM) in well-perfused areas may already be affected by alkaline detergents. Oscillating pressure changes can mimic the intraabdominal pressure changes that occur during respiration to optimize microperfusion inside the liver. In the study presented here, decellularized rat liver matrices were analyzed by histological staining, DNA content analysis and corrosion casting. Perfusion via the hepatic artery showed more homogenous results than portal venous perfusion did. The application of oscillating pressure conditions improved the effectiveness of perfusion decellularization. Livers perfused via the hepatic artery and under oscillating pressure conditions showed the best results. The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.

Introduction

脱细胞和recellularization可以使得能够在体外 1的功能,移植器官的生成。通过除去细胞和抗原物质( 例如 ,DNA,α-半乳糖表位)从一个器官,非或更少免疫原性外基质(ECM)能够得到。此矩阵可以节省一个器官的三维显微解剖和可作为复育的理想生物基质具有不同的,可能异种来源2的细胞。因此,脱细胞的大鼠肝基质可重新填充与人肝细胞。此人源化微肝脏可以作为离体模型上的疾病( ,先天性代谢疾病,病毒性疾病或恶性肿瘤)或用于临床前的药物测试3研究。

大鼠肝脏灌注脱细胞几种不同的协议已经公布4-13。在所有协议,脱细胞化是由碱性离子或非离子型去污剂灌注经由插管门静脉实现。尽我们所知,我们是第一批通过选择性灌注经门静脉和/或大鼠肝动脉14报告大鼠肝脱细胞。使不同的血管系统,可在肝脏的选择性灌注可以使更好脱细胞的结果,而且,可以在细胞再增殖中起重要作用。

在这项研究中这里详述,肝脏灌注在一个特制的专用灌流器,振荡压力的条件下,使灌注。这些压力条件模仿肝脏的生理呼吸依赖性灌注: 原位 ,肝脏的隔膜,其变动在呼吸过程中对肝灌注有直接影响的连接函数下挂起。灵感具体地说导致降低隔膜和挤压肝脏,优化肝静脉流出,而到期导致肝脏升高和降低腹内压,优化门静脉流入15。

我们的目的是评估振荡压力条件是否具备通过模仿腹内条件体外对大鼠肝脏灌注脱细胞的同质性产生影响。脱细胞过程的同质性可能是灌注脱细胞低估的因素。所有已知的药物用于肝脱细胞的事业改建为ECM。在灌注不良的地方细胞保持在ECM内,而其它地区已经完全脱细胞。以溶解剩余的细胞中,灌注持续时间或压力必须提高,从而导致更多的改建为良好灌注的区域。因此,洗涤剂脱细胞应均匀器官内分布。

Protocol

动物保持在该基金用于实验医学杂志(FEM,查理特,柏林,德国),并且所有实验方案进行了审查并批准由卫生部和地方事务的德国国办(LAGeSo,柏林;注册号Ø0365 / 11)。 1.肝收获手术前准备使用软木塞板固定。把医用被单上盘。采用四针,一个固定吸入面罩在软木板上术麻醉吸入。 门静脉插管酝酿一个外周静脉导管(G 20)连接到一个三通…

Representative Results

的均匀性并且因此不同脱细胞协议的有效性是由肉眼观察,组织学分析,和内脱细胞肝基质剩余DNA含量的分析评价。此外,腐蚀铸件进行脱细胞后肝脏可视化的完整的显微解剖。 肉眼在脱细胞,肝脏变得透亮,说明去除细胞含量。肝脏通过门静脉灌注期间和之后脱细胞(白色箭头)呈不均匀澄清(并因此脱细胞),用肉眼可见剩余的细胞。肝脏通过肝动?…

Discussion

虽然提出了技术大鼠肝收获和脱细胞是容易复制,也有考虑某些关键步骤:

在制备过程中对肝收获,它避免严重出血是非常重要的,因为它会激活血液凝结,并可能导致在肝脏内的血液凝块的形成。在我们看来,这是有利的,门静脉插管之前直接切开腹部大动脉,以避免通过门静脉灌注过程中通过肝动脉血液流入。一旦肝脏插管并明确灌注,血液凝块的形成是不再是一个问?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to gratefully thank Steffen Lippert, Khalid Aliyev, Korinna Jöhrens and Katharina Struecker for their help during this project.

Materials

Self built arterial cannula
 Portex Non Sterile Polyethene Tubing SIMS Portex REF 800/110/100 0,28mm ID 0,61mm OD
 Portex Non Sterile Polyethene Tubing SIMS Portex REF 800/110/200 0,58mm ID 0,96m OD
Venodrop Safe butterfly catheter Fresenius Kabi 3275851 21 G
portal vein cannula
Periphereal Venous Catheter BD 393224 BD Venflon Pro 20G
three-way stopcock smiths medical 888-101RE
surgery
Cotton Sticks Hecht-Assistent 4302
Cotton Pads  Shaoxing Zhengde Surgical dressing 13H118-03
Gauze Bandage Hubei Haige  Medical Instruments 14388
 Ringer Solution Fresenius Kabi 13 HKP022 1000ml
10ml Syringe Braun 4606108V 10ml/ Luer Solo
5ml Syringe Braun 4606061V 5ml /Luer Solo
Suture (Silk 6/0) Resorba H1F LOT 105001.81
medical drape Shaoxing Zhengde Surgical dressing D0613011
surgical instruments
needle holder Geuder 17570
micro-forceps Inox-Electronic 91150-20
micro-scissors Martin 11-740-11
micro-forceps S&T  112314
Clamp Aesculap BH111R
scissors F S T  14501-14
surgical forceps Aesculap BD 557
Decellularisation
Respirator Resmed 14.24.11.0004 SmartAIR ST
Perfusion Device Charite, medical engineering laboratory custome-made device decellularisation device
peristaltic pump ismatec reglo ICC IDEX ISM4408  4-channel
heidelberger extension 75 cm  Fresenius Kabi 2873 75 cm
MS/CA pump-segment IDEX IS 3510  MS/CA/click'n'go/POM-C
CA 2-stopper tube Pharmed BPT NSF-51
bubble trap  custome-made item
Luer Lock hose connector Neolab No. 02-1887
Detergents
SDS pellets Carl Roth  CN30.4  2,5 kg
Triton X-100 Carl Roth  3051.1  10l
PBS  Gibco 14190-094 DPBS
staining
Eosin 1% Morphisto 10177
Mayer hematoxylin AppliChem A4840
gomori staining Morphisto 11104
AlcainBlue-PAS staining Morphisto 11388
Direct Red 80  Sigma Aldrich 365548

References

  1. Struecker, B., Raschzok, N., Sauer, I. M. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 11, 166-176 (2014).
  2. Crapo, P. M., Gilbert, T. W., Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials. 32, 3233-3243 (2011).
  3. Wang, X., et al. Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors. J Biomed Mater Res A. , (2013).
  4. Uygun, B. E., et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 16, 814-820 (2010).
  5. Shupe, T., Williams, M., Brown, A., Willenberg, B., Petersen, B. E. Method for the decellularization of intact rat liver. Organogenesis. 6, 134-136 (2010).
  6. Bao, J., et al. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell transplantation. 20, 753-766 (2011).
  7. Baptista, P. M., et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 53, 604-617 (2011).
  8. Soto-Gutierrez, A., Wertheim, J. A., Ott, H. C., Gilbert, T. W. Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest. 122, 3817-3823 (2012).
  9. Soto-Gutierrez, A., et al. A whole-organ regenerative medicine approach for liver replacement. Tissue engineering. Part C, Methods. 17, 677-686 (2011).
  10. De Kock, J., et al. Simple and quick method for whole-liver decellularization: a novel in vitro three-dimensional bioengineering tool. Archives of toxicology. 85, 607-612 (2011).
  11. Park, K. M., Woo, H. M. Systemic decellularization for multi-organ scaffolds in rats. Transplantation proceedings. 44, 1151-1154 (2012).
  12. Shirakigawa, N., Ijima, H., Takei, T. Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. J Biosci Bioeng. , (2012).
  13. Ren, H., et al. Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. Liver Int. 33, 448-458 (2013).
  14. Struecker, B., et al. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. , (2014).
  15. Struecker, B., et al. Porcine Liver Decellularization Under Oscillating Pressure Conditions: A Technical Refinement to Improve the Homogeneity of the Decellularization Process. Tissue engineering. Part C, Methods. , (2014).

Play Video

Cite This Article
Hillebrandt, K., Polenz, D., Butter, A., Tang, P., Reutzel-Selke, A., Andreou, A., Napierala, H., Raschzok, N., Pratschke, J., Sauer, I. M., Struecker, B. Procedure for Decellularization of Rat Livers in an Oscillating-pressure Perfusion Device. J. Vis. Exp. (102), e53029, doi:10.3791/53029 (2015).

View Video