Particle-tracking microrheology investigates the viscoelasticity of materials. Here, the technique is used to determine the viscoelasticity, creep compliance and effective crosslinking roles of different matrix components of a bacterial biofilm. The matrix consists of polymeric substances secreted by the bacteria and its components determine biofilm structure and mechanical properties.
Bacterial cells are able to form surface-attached biofilm communities known as biofilms by encasing themselves in extracellular polymeric substances (EPS). The EPS serves as a physical and protective scaffold that houses the bacterial cells and consists of a variety of materials that includes proteins, exopolysaccharides and DNA. The composition of the EPS may change, which remodels the mechanic properties of the biofilm to further develop or support alternative biofilm structures, such as streamers, as a response to environmental cues. Despite this, there are little quantitative descriptions on how EPS components contribute to the mechanical properties and function of biofilms. Rheology, the study of the flow of matter, is of particular relevance to biofilms as many biofilms grow in flow conditions and are constantly exposed to shear stress. It also provides measurement and insight on the spreading of the biofilm on a surface. Here, particle-tracking microrheology is used to examine the viscoelasticity and effective crosslinking roles of different matrix components in various parts of the biofilm during development. This approach allows researchers to measure mechanic properties of biofilms at the micro-scale, which might provide useful information for controlling and engineering biofilms.
Most bacterial cells are able to employ both planktonic (free-living) and surface-attached (sessile) modes of growth 1. In the surface-attached mode of growth, bacterial cells secrete and encase themselves in large amounts of extracellular polymeric substances (EPS) to form biofilms. The EPS mainly consists of proteins, exopolysaccharide, extracellular DNA and is essential to biofilm formation 2. It serves as a physical scaffold by which bacteria can use to differentiate spatially and protects the bacteria from harmful environmental conditions and host responses. Different components of EPS have distinct roles in biofilm formation 3 and changes in the expression of EPS components can dramatically remodel biofilm structures 4. EPS components can also function as signaling molecules 5, and recent studies has shown certain EPS components interacting with microbial cells to guide their migration and biofilm differentiation 6-8.
Research on the EPS has greatly advanced based upon the morphological analyses of biofilms produced by mutants defective in a specific component of the EPS 9,10. In addition, the EPS is usually characterized at the macro-scale (bulk characterization) 11. Morphological analyses however can lack quantitative detail and bulk characterization, which returns average values, loses the detail that exists within the heterogeneity of the biofilm. There is now an increasing trend to progress to real-time characterization of the mechanic properties of EPS at the micro-scale. This protocol demonstrates how particle-tracking microrheology is able to determine the spatiotemporal effects of matrix components Pel and Psl exopolysaccharides on the viscoelasticity and effective crosslinking of Pseudomonas aeruginosa biofilms 4.
Passive microrheology is a simple and inexpensive rheology method that provides the highest throughput of spatial microrheological sampling of a material to date 12,13. In passive microrheology, probe spheres are placed in the sample and their Brownian motion, driven by thermal energies (kBT) is followed by video microscopy. Several particles can be tracked simultaneously, and the time-dependent coordinates of the particles follow a conventional random walk. Therefore, on average, the particles remain at the same position. However, the standard deviation of the displacements or the mean squared displacement (MSD) of the particles, is not zero. Since viscous fluids flow, the particle MSD in a viscous fluid grows linearly as time progresses. In contrast, the polymeric crosslinking found in viscoelastic or elastic substances help them to resist flow, and particles become limited in their displacement, leading to plateaus in the MSD curve (Figure 1A). This observation follows the relation MSD∝tα , where α is the diffusive exponent that is related ratio of elastic and viscous contributions of the substance. For particles moving in viscous fluids α = 1, in viscoelastic substances 0 < α < 1, and in elastic substances α = 0. The MSD may also be used to calculate the creep compliance, which is the tendency of the material to deform permanently over time and estimates how easily a material spreads.
The size, density and surface chemistry of the particle are critical to the correct application of microrheological experiment and are chosen with respect to the system studied (in this case the polymers of the biofilm matrix, see Figure 1B). Firstly, the particle measures the rheology of the substance with structures that are much smaller than the particle itself. If the substance's structures are of similar scale to the particle, the motion of the particle is perturbed by the shape and orientation of the individual structures. However, if the structures surrounding the particle are much smaller, this effect is small and averaged out, presenting a homogeneous environment to the particle (Figure 1B). Secondly, the density of the particle should be similar to the medium (1.05 g ml-1 for water based mediums) such that sedimentation is avoided and inertial forces are negligible. Most particles with polystyrene lattices meet the above criteria. Ideally, the particle does not interact with the polymers of the biofilm matrix as the rheological interpretation of particle MSD is only valid if motion is random, driven by thermal energy and collision with substance structures. This can be observed by checking whether the probe particle tends to bind or bounce off the surface of a pre-grown biofilm. However, despite the lack of attraction to the biofilm, the particles must be able to be incorporated into the matrix. In addition, the physiochemical heterogeneity of the biofilm may result in different particles being more suitable as probes in different regions of the biofilm. Thus, particles of different sizes and surface chemistry should be applied to the biofilm.
As such, the particle MSD is able to provide useful information on how different components contribute to the rheology and spreading of the biofilm. Furthermore, the use of different probes allows one to derive information on the spatial physiochemical heterogeneity of the biofilm. This method can be used to test the effect antimicrobial treatment on the mechanical properties of the biofilm, or applied to mixed species biofilms to investigate how the mechanical properties of the biofilm are changed from introduction of another species. Particle MSDs may also be useful for characterizing biofilm dispersal. Such studies would be helpful in our understanding of biofilms, potentially improving biofilm treatments and engineering of biofilms for useful activities.
1. Biofilm Cultivation
2. Microscopy
3. Particle Tracking Analysis
The local viscoelastic properties of the biofilm in different regions of the biofilm, which included the voids (medium above the biofilm), plains (undifferentiated flat layer of cells) and microcolonies (see labels in Figure 2A) were investigated. The temporal changes in viscoelastic properties of the biofilm during maturation from days 3 to 5 were also determined. The MSD of the particles in the voids was used as a control and comparable to the MSD of particles in pure medium. In contrast, particles trapped in the biofilm vibrated at fixed positions and MSD values ranged from those typical of viscoelastic materials to strongly elastic gels (Figure 3).
Mucoid P. aeruginosa wild-type and its Δpel mutant strains (Figure 2A and 2B) developed microcolonies scattered on a thin plain by day 3 in their biofilms. The plain on day 3 was too thin for the investigation of rheological properties. In both biofilms formed by the mucoid P. aeruginosa wild-type and Δpel strains, the MSD of particles in the day 3 microcolonies was independent of time for time lags of 0.1 sec to 10 sec (α = 0), indicating that the microcolonies were elastic (Figure 4, Table 1). The median creep compliances calculated from the corresponding particle MSDs were 4.3 x 10-2 Pa-1 and 3.6 x 10-2 Pa-1 respectively. By day 5 the creep compliance of the microcolonies in mucoid P. aeruginosa wild-type strain increased to 2.5 x 10-1 Pa-1, indicating a reduction in effective crosslinking within the matrix. The day 5 microcolonies were still elastic with α = 0. Δpel did not change in rheology from days 3 to 5. The plains in mucoid P. aeruginosa wild-type and Δpel strains were similar in elasticity (α = 0) and effective crosslinking to day 3 microcolonies, which could be reflective of their maturity (undifferentiated structure).
Biofilms formed by Δpsl mutant strain (Figure 2C) were less differentiated and delayed in development. This resulted in biofilms with thick plains that developed microcolonies after day 3. The MSD values showed that the biofilms were much less effectively crosslinked than P. aeruginosa wild-type and Δpel strains (Figure 4, Table 1). The plains were viscoelastic, with α = 0.12 and 0.26 at days 3 and 5 respectively. The median creep compliance of day 3 and 5 plains was 1.0 Pa-1. When microcolonies had developed in day 5, the creep compliance had decreased to 2.8 x 10-1 Pa-1, indicating that a threshold crosslinking is required for microcolony differentiation. However, the creep compliance was still greater than the creep compliance of younger day 3 mucoid P. aeruginosa wild-type and Δpel microcolonies. The day 5 microcolonies were viscoelastic with α = 0.34. Thus, the P. aeruginosa biofilm is elastic and highly crosslinked in the absence of Pel. In the absence of Psl, the biofilm became viscoelastic and less crosslinked. In the mature biofilm structures such as the microcolonies, expression of both Pel and Psl exopolysaccharides resulted in distinct rheological differences over time. The reduction in crosslinking could be due to the reduction of Psl to Pel exopolysaccharides in the biofilm matrix during maturation.
Figure 1: Particle tracking microrheology in a biofilm. (A) Gray circles depict particle MSD in a viscous substance, which grows linearly with time and α = 1. Black triangles depict particle MSD of an elastic substance, which is independent of time and a = 0. (B) Diagram of probe particle vibrating in the EPS of the biofilm. The particle is modeled like a bacteria cell and is similar in diameter. The matrix polymers that envelop the particle are much smaller than the particle.
Figure 2: Perspective and sectional view of day 5 biofilms (green) by confocal microscopy after continuous feeding with 1.0 µm (purple), 0.5 µm (red) and 0.2 µm (orange) particles with negatively charged carboxylated surface. Biofilms formed from (A) mucoid P. aeruginosa, and mutants (B) Δpel and (C) Δpsl strains. Particles are incorporated in all regions of the biofilm. Examples of microcolonies, plains and voids are labeled in (A). Modified from Chew et al., mBio, 2014 4. Please click here to view a larger version of this figure.
Figure 3: Particle trajectories. Comparison of a track of a particle executing Brownian motion in growth medium (multicolored) compared to tracks of particles vibrating in biofilm microcolonies (dark blue). The segmented colors indicate breaks in tracking due to particle moving out of focus in the z-plane.
Figure 4: MSDs of 1.0 µm particles in biofilms. Mucoid P. aeruginosa is elastic and microcolonies are reduced in effective crosslinking from days 3 to 5; Δpel is elastic and does not change in rheology from days 3 to 5; Δpsl is viscoelastic and mainly consists of plains that do not change significantly in rheology from days 3 to 5.
Strain | Day | Region | Median Creep Compliance (Pa-1) |
wild-type | 3 day | Microcolony | 4.3 x 10-2 |
wild-type | 5 day | Microcolony | 2.5 x 10-1 |
wild-type | 5 day | Plain | 4.1 x 10-2 |
Δpel | 3 day | Microcolony | 3.6 x 10-2 |
Δpel | 5 day | Microcolony | 3.6 x 10-2 |
Δpel | 5 day | Plain | 3.2 x 10-2 |
Δpsl | 3 day | Plain | 1.0 x 100 |
Δpsl | 5 day | Plain | 1.0 x 100 |
Δpsl | 5 day | Microcolony | 2.8 x 10-1 |
Table 1: Median creep compliances and estimated diffusive exponents of wild-type and mutant strains according to biofilm age and region.
Microrheology is a useful tool for local rheological measurements in heterogeneous systems, such as microbial biofilms. It is a non-destructive technique, enabling the real-time monitoring of rheological changes within the same biological sample over multiple time points. In this protocol, particle-tracking microrheology was applied to Pel and Psl exopolysaccharide mutants in order to investigate how they affect the elasticity and effective crosslinking of the biofilm matrix. Psl favors the development of elastic biofilms with high effective crosslinking, whereas Pel favors viscoelastic and looser biofilms. When both exopolysaccharides are produced, the biofilm microcolonies becomes less effectively crosslinked as the biofilm matures, consistent with a decrease in Psl over Pel.
Biofilms formed by different bacterial species have distinct EPS compositions. The EPS of mucoid P. aeruginosa strains used in this study mainly consists of exopolysaccharides 16. Other species may use large extracellular adhesion proteins 17 and DNA 18 as their major components of the EPS. The approach described here could be used to determine the rheological contribution of other EPS components and their effect on growth. In addition, biofilms grown in different setups may have drastically different physical properties that affect their rheology. For example, mucoid P. aeruginosa supplemented with glucose forms more biofilm with highly differentiated structures under flow compared to static conditions. Studies have also shown that biofilms exposed to shear stress such as flow makes the biofilms more cohesive and elastic 19,20. Important steps and factors to consider for successful biofilm particle-tracking microrheology study are as follows:
The system dimensions for investigation or scale of interest with respect to time and space
When considering spatial scales, one must consider the size of the structures that give rise to the viscoelastic properties of the system (in our case, the polymers of the biofilm matrix). The polymers surrounding the probe particle should be much smaller in structure than the particle and present an isotropic environment to the particle. High-resolution imaging is required to capture small particle motion or vibrations, but will reduce the amount of area imaged for equivalent file size. When considering temporal scales, elastic biofilms that exhibit slow dynamics require taking videos over longer time scales (e.g. hr) and using low frame rates (e.g. min). Shorter videos can be taken for viscoelastic biofilms with fast dynamics (min), but require higher frame rates (sec or millisec). Using suitable resolution, frame rate, video duration for each experiment will keep file sizes low for tractable analysis.
Biofilm viscoelasticity, heterogeneity and dimensions
Particle motion may be undetectable in very elastic biofilms (MSD <10-4). In such cases, active microrheological techniques that apply force to displace the particle are preferable. Rheological sampling of different regions of biofilm should be made to ensure the mechanical heterogeneity of the biofilm is captured. Heterogeneous morphology, however, is not necessarily a good indicator of mechanical heterogeneity, as despite homogeneous appearances the biofilm can be complex in rheology: Δpsl biofilms are more homogeneous in morphology and delayed in differentiation, but have a complex and heterogeneous rheological profile. In contrast, Δpel biofilms have a heterogeneous appearance with well-differentiated microcolonies but a constant rheology throughout the biofilm. For biofilms with large microcolony dimensions (e.g. >50 µm in diameter and height), it may be meaningful study the rheological differences according to height (top and bottom of microcolonies), or distance from microcolony edge.
Selection of probe particles
As described above, the size of particles should be larger than the structures of the materials that give rise to its viscoelastic properties. In addition, particles with different surface chemistry may result in binding to different areas and EPS components within the biofilm. Thus the effects of particles with different surface chemistry should be explored so that biofilm heterogeneity can be considered. All probe particles should have a high zeta potential to minimize agglomeration. Particles that bind together cannot be used as accurate probes and should be excluded from analysis.
Minimization of drift
Drift can be caused by temperature or air pressure changes, microscope stage movement (usually in the z-direction), anti-vibration table imbalance and internal flow within the system. Drifts usually result in superdiffusion of the particle and α > 1. An α > 1 indicates that other than thermal energy, active processes are involved moving particle and passive microrheology is not applicable.
Proper biofilm culture maintenance
Flow cells must be properly assembled to prevent leakages and biofilms must be kept free from contamination. Biofilms can also be grown in other setups alternative to the flow cell, such as slides and microwells for static culturing conditions. An inverted microscope should be used for imaging of microwells.
In summary, particle tracking microrheology is a useful technique that can be employed using microscopes standard to a biological laboratory. In addition, programs involved in the calculation and analysis of particle MSDs is readily available in the public domain. For example, msdanalyzer and TrackArt 21 (http://www2.sbs.ntu.edu.sg/staff/rskraut/index.php/trackart) are programs that run in the Matlab environment. However, because the technique relies only on thermal energy to move the particles, it is unable to resolve between samples of higher elasticity. Active techniques, such as magnetic tweezing, apply a force on the particle to act on and move within the sample and would be able to determine the viscoelasticity of highly elastic samples.
The authors have nothing to disclose.
This research is supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, the Start-up Grants (M4330002.C70) from Nanyang Technological University, and AcRF Tier 2 (MOE2014-T2-2-172) from Ministry of Education, Singapore. The authors thank Joey Yam Kuok Hoong for participating in the demonstration of this protocol.
Fluorspheres | Invitrogen | F-8821 | 1.0 um red fluorescent (580/605) microspheres with carboxylate modification |
Zeiss Axio Imager M1 | Carl Zeiss | Epifluorescent Microscope | |
Masterflex L/S Digital Drive 07523-80 | Cole-Parmer | EW-07523-80 | Peristaltic pump |
Flow Cell Chambers | Technical University of Denmark | ||
Bubble Trap | Technical University of Denmark | ||
Silicone Tubing | Dow Corning | 3 mm outer diameter, 1 mm inner diameter | |
Clear polypropylene plastic connectors | Cole Parmer | 06365-83 | 1/16 in. (1.588 mm) |
Binder Clips | To clamp tubing | ||
Coverslips | Thermo Scientific™ Nunc™ | 50 x 24 mm | |
Syringe 3 mL | Terumo | ||
27G Needle | Terumo | ||
2L Storage/Media Bottles | VWR® | ||
Trolley | To hold biofilm setup |