Summary

体外肠囊评估黏膜通透性在胃肠道疾病模型

Published: February 09, 2016
doi:

Summary

This protocol describes the use of excised intestinal tissue preparations or “intestinal sacs” as an ex vivo model of intestinal barrier function. This model may be used to assess integrity of both the epithelial barrier and the mucous gel layer at specific intestinal sites in animal models of digestive disease.

Abstract

上皮屏障是胃肠道的第一先天防御和选择性地调节传输从所述内腔到底层组织区室,限制横跨上皮更小的分子和几乎完全禁止上皮大分子转运的运输。此选择性通过粘膜凝胶层,这限制了亲脂性分子和两个心尖受体和上皮的紧交界蛋白质复合物的运输来确定。 体外细胞培养的上皮的模型是方便的,但作为一种模式,它们缺乏的微生物群,粘液凝胶,上皮细胞和免疫系统之间的相互作用的复杂性。另一方面,可使用“肠囊”进行体内肠吸收或渗透性的评价,但是这些测定法测量总胃肠道吸收,与没有指示点特异性的。 体外通透性测定;是测量任一整体肠完整性或特定分子的比较运输,与肠部位特异性的附加优点的快速和灵敏的方法。在这里,我们描述了肠囊的渗透性编写研究报告和表观渗透率(P 程序 )的计算 横跨肠屏障的分子。这种技术可以用作评估药物吸收的方法,或审查胃肠疾病的动物模型的区域的上皮屏障功能障碍。

Introduction

胃肠道的肠上皮屏障是在人成年估计在400 2的粘膜表面积。因此,不断地暴露从微生物,摄入药物,营养物和细菌毒素挑战。主机必须不仅容许的共生菌和潜在病原体区分,但必须防止从穿越上皮屏障这些物种和它们的分泌的分子,而在同一时间,允许营养物质的吸收。因此,肠上皮细胞的作用是充当选择性屏障的管腔内容1。做到这一点,在部分地通过在粘膜先天性上皮防御系统,它通过包括组成型和诱导机制2响应生物系统的作用。

上皮屏障功能的丧失是病理学是一个数肠胃疾病的特性体内上皮屏障功能的检查可通过示踪剂分子的经口管饲,并随后血清分析3进行评估。然而,该技术提供了没有说明的屏障功能障碍的部位。在体外和使用Transwell小系统3分别尤斯灌流室4,5跨上皮电阻体外评估,通常作为上皮屏障功能的替代指标,但缺乏动物模型6的贡献疾病生理学。在这个协议中,我们描述一个离体组织制剂模型,它允许肠道的完整性和可用于在多个级别来评估黏膜屏障功能的直接的和局部的评估。重要的是,这种技术可应用于疾病的动物模型,或可以药理学上操纵以允许的粘膜屏障功能障碍深度询问。

Protocol

在本协议中所有的动物工作是严格遵守纽卡斯尔动物伦理委员会的大学完成批准程序。 1,仪器,文化传媒和菜品的研制预暖媒体199(TC199)或Dulbecco氏改良的Eagle培养基(DMEM)培养基至37 C。预含氧通过用95% 的 O 2/5%CO 2鼓泡的介质。检查该介质具有7.3的最终pH。 通过削减25厘米部分每个囊准备缝合。环缝合成一个未关闭的结。 </ol…

Representative Results

这个协议可以被用于检查在肠屏障功能中胃肠道疾病的动物模型中的区域的变化。通过测量跨过粘膜表面的细胞旁探针在胃肠道7的变化的区域的磁通,上皮紧密连接的完整性进行评估。另外,通过按大小改变旁探针的性质(图2)或疏水性(图3),上皮扰动的程度或粘膜的凝胶层的完整性,也可以测量。采用较 ​​大分子量标记允许粘膜…

Discussion

这里,我们已经详细介绍了分离和制备肠囊的评估黏膜屏障功能体外 。肠囊的准备工作,主要被用于中医药研究,考察候选药物在整个肠道的吸收。然而,该测定是同样适合于肠道疾病的研究。肠道通透性可能因地区和渗透率的网站具体的评估相差很大,可以更好地了解粘膜完整性的消化系统疾病的区域重要性。该测定是健壮和正确的生理条件下,分离的组织保持存活时间长达6小时的验?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by National Health and Medical Research Project Grant APP1021582 and a Hunter Medical Research Institute grant sponsored by Sparke Helmore/NBN Triathlon and the Estate of the late Leslie Kenneth McFarlane.

Materials

Dekantel  Non-absorbable Silk suture Braintree Scientific SUT-S 116
Media 199 (TC199)  Life Technologies 11043-023 No phenol red as this interferes with fluorescence
Dulbecco's Modified Eagle Medium (DMEM) Life Technologies 21063-045 No phenol red as this interferes with fluorescence
N-acetylcysteine Sigma Aldrich Use at 10mM in media
Small animal vascular cathether: Physiocath Data Sciences International 277-1-002
FITC-Dextran 4400 MW Sigma Aldrich FD-4
FITC-Dextran 20,000 MW Sigma Aldrich FD-20
FITC-Dextran 70,000 MW Sigma Aldrich FD-70

References

  1. Goggins, B. J., Chaney, C., Radford-Smith, G. L., Horvat, J. C., Keely, S. Hypoxia and Integrin-Mediated Epithelial Restitution during Mucosal Inflammation. Frontiers in immunology. 4, 272 (2013).
  2. Otte, J. M., Kiehne, K., Herzig, K. H. Antimicrobial peptides in innate immunity of the human intestine. Journal of gastroenterology. 38, 717-726 (2003).
  3. Robinson, A., et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology. 134, 145-155 (2008).
  4. Feighery, L., et al. Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. The Journal of trauma. 64, 131-137 (2008).
  5. Keely, S., et al. Chloride-led disruption of the intestinal mucous layer impedes Salmonella invasion: evidence for an ‘enteric tear’ mechanism. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 28, 743-752 (2011).
  6. Keely, S., et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal immunology. 7, 114-123 (2014).
  7. Sourisseau, T., et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol. 26, 2387-2398 (2006).
  8. Ruehl-Fehlert, C., et al. Revised guides for organ sampling and trimming in rats and mice–part 1. Exp Toxicol Pathol. 55, 91-106 (2003).
  9. Barthe, L., Woodley, J. F., Kenworthy, S., Houin, G. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. European journal of drug metabolism and pharmacokinetics. 23, 313-323 (1998).
  10. Marks, E., et al. Oral Delivery of Prolyl Hydroxylase Inhibitor: AKB-4924 Promotes Localized Mucosal Healing in a Mouse Model of Colitis. Inflammatory bowel diseases. 21, 267-275 (2015).
  11. Keely, S., et al. Hypoxia-inducible factor-dependent regulation of platelet-activating factor receptor as a route for gram-positive bacterial translocation across epithelia. Mol Biol Cell. 21, 538-546 (2010).
  12. Brayden, D. J., Bzik, V. A., Lewis, A. L., Illum, L. CriticalSorb promotes permeation of flux markers across isolated rat intestinal mucosae and Caco-2 monolayers. Pharmaceutical research. 29, 2543-2554 (2012).
  13. Hubbard, D., Ghandehari, H., Brayden, D. J. Transepithelial transport of PAMAM dendrimers across isolated rat jejunal mucosae in ussing chambers. Biomacromolecules. 15, 2889-2895 (2014).
  14. Keely, S., et al. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharmaceutical research. 22, 38-49 (2005).
  15. Maher, S., et al. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 38, 291-300 (2009).
  16. Balda, M. S., et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. The Journal of cell biology. 134, 1031-1049 (1996).
  17. Behrens, I., Stenberg, P., Artursson, P., Kissel, T. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharmaceutical research. 18, 1138-1145 (2001).
  18. Stefka, A. T., et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 111, 13145-13150 (2014).
  19. Keely, S., et al. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome. Gut microbes. 3, 250-260 (2012).
  20. Barrett, K. E., Keely, S. J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annual review of physiology. 62, 535-572 (2000).
  21. Soni, J., et al. Rat, ovine and bovine Peyer’s patches mounted in horizontal diffusion chambers display sampling function. Journal of controlled release : official journal of the Controlled Release Society. 115, 68-77 (2006).
  22. Justino, P. F., et al. Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer chemotherapy and pharmacology. , (2015).
  23. Tran, C. D., Sundar, S., Howarth, G. S. Dietary zinc supplementation and methotrexate-induced small intestinal mucositis in metallothionein-knockout and wild-type mice. Cancer biology & therapy. 8, 1662-1667 (2009).
  24. Musch, M. W., Wang, Y., Claud, E. C., Chang, E. B. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota. Digestive diseases and sciences. 58, 668-677 (2013).

Play Video

Cite This Article
Mateer, S. W., Cardona, J., Marks, E., Goggin, B. J., Hua, S., Keely, S. Ex Vivo Intestinal Sacs to Assess Mucosal Permeability in Models of Gastrointestinal Disease. J. Vis. Exp. (108), e53250, doi:10.3791/53250 (2016).

View Video