Summary

Lateral Kronisk Kraniell Window Forberedelse Aktiverer<em> I Vivo</em> Observasjon etter Distal Middle Cerebral arterieokklusjon i Mus

Published: December 29, 2016
doi:

Summary

Kirurgisk okklusjon av en distal midten cerebral arterie gren (MCAO) er en hyppig brukt modell i eksperimentell slag forskning. Dette manuskriptet beskriver den grunnleggende teknikk for permanent MCAO, kombinert med innsetting av en lateral kranial vindu, som gir mulighet for langsgående intravital mikroskopi i mus.

Abstract

Focal cerebral iskemi (dvs. hjerneinfarkt) kan forårsake stor hjerneskade, som fører til et alvorlig tap av nervefunksjonen og dermed til en rekke motor og kognitive funksjonshemninger. Den høye forekomsten utgjør en alvorlig helsebelastning, som hjerneslag er blant de viktigste årsakene til langvarig uførhet og død på verdensbasis en. Utvinning av neuronal funksjon er, i de fleste tilfeller, bare delvis. Så langt er behandlingstilbud svært begrenset, særlig på grunn av den smale tidsvinduet for trombolyse 2,3. Bestemme metoder for å akselerere utvinning fra hjerneslag forblir en førsteklasses medisinsk mål; Dette har imidlertid vært hemmet av utilstrekkelige mekanistiske innsikt i gjenopprettingsprosessen. Eksperimentelle takts forskere ofte ansette gnagermodeller av fokal cerebral iskemi. Utover den akutte fase, slag forskning i økende grad fokusert på den subakutte og kroniske fasen etter cerebral ischemi. De fleste hjerneslag forskere søke permanent eller transient okklusjon av MCA i mus eller rotter. Hos pasienter, okklusjoner av MCA er blant de hyppigste årsakene til hjerneinfarkt 4. Foruten proksimale okklusjon av MCA bruker filament modell, er kirurgisk okklusjon av distal MCA trolig den mest brukte modellen i eksperimentell slag forskning fem. Okklusjon av en distal (til forgrening av lenticulo-stripete arterier) MCA gren deler vanligvis striatum og fremst påvirker neocortex. Vessel okklusjon kan være permanent eller forbigående. Høy reproduserbarhet av lesjon volum og svært lav dødelighet i forhold til det langsiktige utfallet er de viktigste fordelene med denne modellen. Her viser vi hvordan du utfører en kronisk hjerne vindu (CW) forberedelse lateralt for sagittal sinus, og etterpå hvordan å kirurgisk indusere en distal slag under vinduet ved hjelp av en kraniotomi tilnærming. Denne tilnærmingen kan brukes for sekvensiell avbildning av akutte og kroniske endringer som følge av iskemi viaepi-opplysende, konfokal laser scanning, og to-foton intramikroskopi.

Introduction

Stroke is among the principal causes of long-term disability and death worldwide1, coming second after coronary heart disease. In addition, stroke is the primary cause of long-term disability, underscoring its tremendous socioeconomic impact6-8. Beyond acute treatment, investigating new approaches and mechanisms to accelerate and enhance recovery after stroke remains a prime medical goal7.

In the last few decades, data from experimental stroke research has contributed substantially to understanding the complex pathophysiological cascades triggered by ischemia9,10. Excitotoxicity, apoptosis, peri-infarct depolarization, and inflammation have been identified as the most relevant mediators of cell death following focal cerebral ischemia. Moreover, using animal models of cerebral ischemia, important concepts, diagnostic modalities, and therapeutic approaches have been developed and validated (e.g., “penumbra” and thrombolysis)11.

The availability of experimental stroke models, combined with non-invasive imaging modalities (e.g., magnetic resonance imaging (MRI), computed tomography, or laser speckle contrast analysis), enables the researcher to investigate hyperacute and chronic pathophysiological changes induced by the ischemic insult in a longitudinal manner12. Along with studying the spatiotemporal profile of the evolving lesion, changes resembling neuronal plasticity can be investigated and correlated to functional outcomes and histological findings. Within the last few years, further methodological advances have been made using the combination of cerebral ischemia models and in vivo microscopy via cranial windows13. These new techniques allow investigators to analyze the neurovascular unit at the cellular and molecular level, with great analytic power in the acute, subacute, and chronic phases following focal cerebral ischemia14. Moreover, in vivo microscopy imaging of microcirculatory dynamics has revealed novel aspects of cerebral microvasculature function and angioarchitecture, with significant pathophysiological relevance15-17.

In this protocol, we present how to perform a chronic CW preparation lateral to the sagittal sinus and how to surgically induce a distal stroke underneath the window. This mouse model can be applied to sequential imaging of acute, subacute, and chronic changes following focal cerebral ischemia via epi-illuminating, confocal laser scanning, and two-photon intravital microscopy.

Protocol

ETIKK UTTALELSE: Forsøk med dyr fag ble utført i samsvar med de retningslinjer og bestemmelser fastsatt av Landesamt fuer Gesundheit und Soziales, Berlin, Tyskland (G0298 / 13) og Arrive kriterier som gjelder. For denne studien, 10- til 12-uker gamle hann C57BL / 6J-mus ble anvendt. 1. Lateral Kronisk Kranio Window Forberedelse Utføre anestesi med en subkutan injeksjon av ketamin (90 mg / kg) og xylazin (10 mg / kg). Test for tilstrekkelig sedasjon med en smerte stimulans. </li…

Representative Results

Tidslinjen og representative resultater er vist i figurene 2 og 3. Cranial vindu forberedelse, med en liten hjerne vindu lateralt for superior sagittal sinus (figur 2 B, C, D) resulterer i en svært lav dødelighet og sykelighet når utført av en erfaren kirurg. Alle de 10 dyrene overlevde, og alle kroniske CW kan brukes for høy bildekvalitet, selv 28 dager etter operasjonen. Det var ikke noe problem med sårinfeksjoner eller andre kom…

Discussion

Hjerneslag er blant de viktigste årsakene til langvarig uførhet og død på verdensbasis en. Utover akutt behandling, undersøke nye tilnærminger og mekanismer for å akselerere og øke utvinningen etter hjerneslag forblir en førsteklasses medisinsk mål 7. Eksperimentelle takts forskere ofte ansette gnagermodeller av fokal cerebral iskemi. Faktisk modeller induserende forbigående eller permanent MCAO etterligne en av de mest vanlige typene av fokal cerebral ischemi hos pasienter 4.

Disclosures

The authors have nothing to disclose.

Acknowledgements

VP is a participant in the Charité Clinical Scientist Program, funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health. TB is an SNSF PostDoc Mobility fellow. The authors receive grant support from EinsteinStiftung/A-2012-153 to PV.

Materials

Binocular surgical microscope Zeiss Stemi 2000 C
Light source for microscope Zeiss CL 6000 LED
Heating pad with rectal probe FST 21061-10
Stereotactic frame Kopf Model 930
Anaethesia system for isoflurane Draeger
Isoflurane Abott
Dumont forceps #5 FST 11251-10
Dumont forceps #7 FST 11271-30
Bipolar Forceps Erbe 20195-501
Bipolar Forceps  Erbe                              20195-022
Microdrill FST                              18000-17         
Needle holder FST 12010-14
5-0 silk suture Feuerstein, Suprama
7-0 silk suture Feuerstein,Suprama
8-0 silk suture Feuerstein, Suprama
Veterinary Recovery Chamber Peco Services V1200

References

  1. Mukherjee, D., Patil, C. G. Epidemiology and the global burden of stroke. World Neurosurg. 76 (6), 85-90 (2011).
  2. Ebinger, M., Prüss, H., et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 311 (16), 1622-1631 (2014).
  3. Ebinger, M., Lindenlaub, S., et al. Prehospital thrombolysis: a manual from Berlin. J vis Exp. (81), e50534 (2013).
  4. Bogousslavsky, J., Van Melle, G., Regli, F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 19 (9), 1083-1092 (1988).
  5. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice – middle cerebral artery occlusion with the filament model. J Vis Exp. (47), (2011).
  6. Donnan, G. A., Fisher, M., Macleod, M., Davis, S. M. Stroke. Lancet. 371 (9624), 1612-1623 (2008).
  7. Meairs, S., Wahlgren, N., et al. Stroke research priorities for the next decade–A representative view of the European scientific community. Cerebrovasc Dis. 22 (2-3), 75-82 (2006).
  8. Rosamond, W., Flegal, K., et al. Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115 (5), 69-171 (2007).
  9. Moskowitz, M. A., Lo, E. H., Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 67 (2), 181-198 (2010).
  10. Dirnagl, U., Iadecola, C., Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22 (9), 391-397 (1999).
  11. Dirnagl, U., Endres, M. Found in Translation: Preclinical Stroke Research Predicts Human Pathophysiology, Clinical Phenotypes, and Therapeutic Outcomes. Stroke. , (2014).
  12. Prinz, V., Hetzer, A. -. M., et al. MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J Cereb Blood Flow Metab. , (2015).
  13. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. (61), (2012).
  14. Holtmaat, A., Bonhoeffer, T., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  15. Iadecola, C., Dirnagl, U. The microcircualtion–fantastic voyage: introduction. Stroke. 44 (6), 83 (2013).
  16. Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., Kleinfeld, D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosc. 16 (7), 889-897 (2013).
  17. Shih, A. Y., Driscoll, J. D., Drew, P. J., Nishimura, N., Schaffer, C. B., Kleinfeld, D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32 (7), 1277-1309 (2012).
  18. Cabrales, P., Carvalho, L. J. M. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. (45), (2010).
  19. Rosell, A., Agin, V., et al. Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome. Transl Stroke Res. 4 (3), 297-307 (2013).
  20. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A., Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital. 3 (2), (2014).
  21. Balkaya, M., et al. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33 (3), 330-338 (2013).
  22. Balkaya, M., Kröber, J., Gertz, K., Peruzzaro, S., Endres, M. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods. 213 (2), 179-187 (2013).
  23. Freret, T., Bouet, V., et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Beh Neurosci. 123 (1), 224-230 (2009).
  24. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). J Exp Stroke Trans Med. 2 (2), 2-27 (2009).
  25. Florian, B., Vintilescu, R., et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett. 438 (2), 180-185 (2008).
  26. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  27. Barber, P. A., Hoyte, L., Colbourne, F., Buchan, A. M. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke. 35 (7), 1720-1725 (2004).
  28. Shin, H. K., Nishimura, M., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  29. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism. Neuroreport. 13 (11), 1431-1435 (2002).
  30. Gertz, K., Priller, J., et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 99 (10), 1132-1140 (2006).
  31. Dirnagl, U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 26 (12), 1465-1478 (2006).

Play Video

Cite This Article
Bayerl, S. H., Nieminen-Kelhä, M., Broggini, T., Vajkoczy, P., Prinz, V. Lateral Chronic Cranial Window Preparation Enables In Vivo Observation Following Distal Middle Cerebral Artery Occlusion in Mice. J. Vis. Exp. (118), e54701, doi:10.3791/54701 (2016).

View Video