Summary

Lateral Kronisk Kraniell fönster Framställning Aktiverar<em> In Vivo</em> Observation Efter Distal Middle Cerebral artärocklusion hos möss

Published: December 29, 2016
doi:

Summary

Kirurgisk ocklusion av en distal mellersta cerebral artär gren (MCAo) är en ofta använd modell i experimentell stroke forskning. Detta manuskript beskriver den grundläggande tekniken för permanent MCAo, kombinerat med insättning av en lateral kraniell fönster, vilket ger möjlighet för längs intravital mikroskopi i möss.

Abstract

Fokal cerebral ischemi (dvs ischemisk stroke) kan orsaka allvarliga hjärnskador, vilket leder till en allvarlig förlust av neuronal funktion och följaktligen till en värd av motoriska och kognitiva funktionsnedsättningar. Den höga förekomsten utgör en allvarlig hälsobörda, som stroke är bland de främsta orsakerna till långvarig funktionsnedsättning och död över hela världen en. Återvinning av neuronal funktion är, i de flesta fall endast partiell. Hittills är behandlingsalternativ mycket begränsade, särskilt på grund av den snäva tidsfönster för trombolys 2,3. Fastställande metoder för att påskynda återhämtningen från stroke fortfarande ett utmärkt medicinsk mål; men detta har hindrats av otillräckliga mekaniska insikter i återhämtningsprocessen. Experimentella strokeforskare använder ofta gnagarmodeller av fokal cerebral ischemi. Bortom den akuta fasen, är stroke allt mer fokuserat på subakut och kronisk fas efter cerebral ischemi. De flesta strokeforskare gäller permanent eller transient ocklusion av MCA hos möss eller råttor. Hos patienter, inneslutningar av MCA är bland de vanligaste orsakerna till ischemisk stroke 4. Förutom proximal ocklusion av MCA använder trådmodellen, är kirurgisk ocklusion av distala MCA förmodligen den mest använda modellen i experimentell stroke forskning 5. Ocklusion av en distal (till förgrening av lenticulo-striate artärer) MCA gren reservdelar typiskt striatum och främst drabbar neocortex. Kärlocklusion kan vara permanent eller övergående. Hög reproducerbarhet av skada volym och mycket låga dödstal i förhållande till den långsiktiga resultat är de viktigaste fördelarna med denna modell. Här visar vi hur du utför en kronisk kraniell fönster (CW) förberedelse sidled till sinus sagittalis, och därefter hur man kirurgiskt framkalla en distal slag under fönstret med hjälp av en kraniotomi tillvägagångssätt. Denna metod kan användas för sekventiell avbildning av akuta och kroniska förändringar efter ischemi viaepi-belysning, konfokala laserskanning, och två-foton intravital mikroskopi.

Introduction

Stroke is among the principal causes of long-term disability and death worldwide1, coming second after coronary heart disease. In addition, stroke is the primary cause of long-term disability, underscoring its tremendous socioeconomic impact6-8. Beyond acute treatment, investigating new approaches and mechanisms to accelerate and enhance recovery after stroke remains a prime medical goal7.

In the last few decades, data from experimental stroke research has contributed substantially to understanding the complex pathophysiological cascades triggered by ischemia9,10. Excitotoxicity, apoptosis, peri-infarct depolarization, and inflammation have been identified as the most relevant mediators of cell death following focal cerebral ischemia. Moreover, using animal models of cerebral ischemia, important concepts, diagnostic modalities, and therapeutic approaches have been developed and validated (e.g., “penumbra” and thrombolysis)11.

The availability of experimental stroke models, combined with non-invasive imaging modalities (e.g., magnetic resonance imaging (MRI), computed tomography, or laser speckle contrast analysis), enables the researcher to investigate hyperacute and chronic pathophysiological changes induced by the ischemic insult in a longitudinal manner12. Along with studying the spatiotemporal profile of the evolving lesion, changes resembling neuronal plasticity can be investigated and correlated to functional outcomes and histological findings. Within the last few years, further methodological advances have been made using the combination of cerebral ischemia models and in vivo microscopy via cranial windows13. These new techniques allow investigators to analyze the neurovascular unit at the cellular and molecular level, with great analytic power in the acute, subacute, and chronic phases following focal cerebral ischemia14. Moreover, in vivo microscopy imaging of microcirculatory dynamics has revealed novel aspects of cerebral microvasculature function and angioarchitecture, with significant pathophysiological relevance15-17.

In this protocol, we present how to perform a chronic CW preparation lateral to the sagittal sinus and how to surgically induce a distal stroke underneath the window. This mouse model can be applied to sequential imaging of acute, subacute, and chronic changes following focal cerebral ischemia via epi-illuminating, confocal laser scanning, and two-photon intravital microscopy.

Protocol

ETIK ANALYS: Experiment som involverar djurförsök har utförts i enlighet med de riktlinjer och regler som anges av Landesamt für Gesundheit und Soziales, Berlin, Tyskland (G0298 / 13) och anländer kriterier, som är tillämpligt. För denna studie 10- till 12-veckor gamla C57BL / 6J-möss användes. 1. Lateral Kronisk Kraniell fönster Framställning Utföra anestesi med en subkutan injektion av ketamin (90 mg / kg) och xylazin (10 mg / kg). Test för adekvat sedering med en …

Representative Results

Tidslinjen och representativa resultat visas i figurerna 2 och 3. Hjärn fönster förberedelse, med en liten hjärn fönster i sidled till sinus sagittalis superior (Figur 2 B, C, D) resulterar i en mycket låg dödlighet och sjuklighet när de utförs av en erfaren kirurg. Alla de 10 djur överlevde, och alla kronisk CW kan användas för hög bildkvalitet, även 28 dagar efter operationen. Det var inga problem med sårinfektioner elle…

Discussion

Stroke är en av de främsta orsakerna till långvarig funktionsnedsättning och död över hela världen en. Utöver akut behandling, undersöka nya metoder och mekanismer för att påskynda och förbättra återhämtningen efter stroke är fortfarande ett utmärkt medicinsk mål 7. Experimentella strokeforskare använder ofta gnagarmodeller av fokal cerebral ischemi. I själva verket, modeller inducerar övergående eller permanent MCAo efterlikna en av de vanligaste typerna av fokal cerebral isc…

Disclosures

The authors have nothing to disclose.

Acknowledgements

VP is a participant in the Charité Clinical Scientist Program, funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health. TB is an SNSF PostDoc Mobility fellow. The authors receive grant support from EinsteinStiftung/A-2012-153 to PV.

Materials

Binocular surgical microscope Zeiss Stemi 2000 C
Light source for microscope Zeiss CL 6000 LED
Heating pad with rectal probe FST 21061-10
Stereotactic frame Kopf Model 930
Anaethesia system for isoflurane Draeger
Isoflurane Abott
Dumont forceps #5 FST 11251-10
Dumont forceps #7 FST 11271-30
Bipolar Forceps Erbe 20195-501
Bipolar Forceps  Erbe                              20195-022
Microdrill FST                              18000-17         
Needle holder FST 12010-14
5-0 silk suture Feuerstein, Suprama
7-0 silk suture Feuerstein,Suprama
8-0 silk suture Feuerstein, Suprama
Veterinary Recovery Chamber Peco Services V1200

References

  1. Mukherjee, D., Patil, C. G. Epidemiology and the global burden of stroke. World Neurosurg. 76 (6), 85-90 (2011).
  2. Ebinger, M., Prüss, H., et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 311 (16), 1622-1631 (2014).
  3. Ebinger, M., Lindenlaub, S., et al. Prehospital thrombolysis: a manual from Berlin. J vis Exp. (81), e50534 (2013).
  4. Bogousslavsky, J., Van Melle, G., Regli, F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 19 (9), 1083-1092 (1988).
  5. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice – middle cerebral artery occlusion with the filament model. J Vis Exp. (47), (2011).
  6. Donnan, G. A., Fisher, M., Macleod, M., Davis, S. M. Stroke. Lancet. 371 (9624), 1612-1623 (2008).
  7. Meairs, S., Wahlgren, N., et al. Stroke research priorities for the next decade–A representative view of the European scientific community. Cerebrovasc Dis. 22 (2-3), 75-82 (2006).
  8. Rosamond, W., Flegal, K., et al. Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115 (5), 69-171 (2007).
  9. Moskowitz, M. A., Lo, E. H., Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 67 (2), 181-198 (2010).
  10. Dirnagl, U., Iadecola, C., Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22 (9), 391-397 (1999).
  11. Dirnagl, U., Endres, M. Found in Translation: Preclinical Stroke Research Predicts Human Pathophysiology, Clinical Phenotypes, and Therapeutic Outcomes. Stroke. , (2014).
  12. Prinz, V., Hetzer, A. -. M., et al. MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J Cereb Blood Flow Metab. , (2015).
  13. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. (61), (2012).
  14. Holtmaat, A., Bonhoeffer, T., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  15. Iadecola, C., Dirnagl, U. The microcircualtion–fantastic voyage: introduction. Stroke. 44 (6), 83 (2013).
  16. Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., Kleinfeld, D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosc. 16 (7), 889-897 (2013).
  17. Shih, A. Y., Driscoll, J. D., Drew, P. J., Nishimura, N., Schaffer, C. B., Kleinfeld, D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32 (7), 1277-1309 (2012).
  18. Cabrales, P., Carvalho, L. J. M. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. (45), (2010).
  19. Rosell, A., Agin, V., et al. Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome. Transl Stroke Res. 4 (3), 297-307 (2013).
  20. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A., Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital. 3 (2), (2014).
  21. Balkaya, M., et al. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33 (3), 330-338 (2013).
  22. Balkaya, M., Kröber, J., Gertz, K., Peruzzaro, S., Endres, M. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods. 213 (2), 179-187 (2013).
  23. Freret, T., Bouet, V., et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Beh Neurosci. 123 (1), 224-230 (2009).
  24. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). J Exp Stroke Trans Med. 2 (2), 2-27 (2009).
  25. Florian, B., Vintilescu, R., et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett. 438 (2), 180-185 (2008).
  26. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  27. Barber, P. A., Hoyte, L., Colbourne, F., Buchan, A. M. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke. 35 (7), 1720-1725 (2004).
  28. Shin, H. K., Nishimura, M., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  29. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism. Neuroreport. 13 (11), 1431-1435 (2002).
  30. Gertz, K., Priller, J., et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 99 (10), 1132-1140 (2006).
  31. Dirnagl, U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 26 (12), 1465-1478 (2006).

Play Video

Cite This Article
Bayerl, S. H., Nieminen-Kelhä, M., Broggini, T., Vajkoczy, P., Prinz, V. Lateral Chronic Cranial Window Preparation Enables In Vivo Observation Following Distal Middle Cerebral Artery Occlusion in Mice. J. Vis. Exp. (118), e54701, doi:10.3791/54701 (2016).

View Video