Summary

维护伊蚊蚊蚊子感染沃尔巴克

Published: August 14, 2017
doi:

Summary

伊蚊蚊感染了沃尔巴克的蚊子被释放到自然种群中, 以抑制媒的传播。我们描述了将Ae. 蚊沃尔巴克感染在实验室中进行实验和现场发布的方法, 并采取预防措施以尽量减少实验室的适应和选择。

Abstract

伊蚊蚊实验感染了沃尔巴克的蚊子被用于控制媒的传播, 如登革热、基孔肯亚和 Zika。沃尔巴克-受感染的蚊子可以被释放到田间, 通过不相容的交配减少人口的大小, 或者通过不耐病毒传播的蚊子来改变种群。为了使这些策略成功, 从实验室释放到野外的蚊子必须与本土蚊子竞争。然而, 在实验室中维持蚊子会导致近亲繁殖、遗传漂移和实验室适应, 从而减少他们在野外的体能, 并可能混淆实验结果。为了测试不同的沃尔巴克感染在该领域中的适用性, 有必要在多个世代的受控实验室环境中维护蚊子。我们描述了在实验室中维护Ae. 蚊蚊子的简单协议, 它适用于沃尔巴克感染和野生类型的蚊子。这些方法最大限度地减少实验室适应和实施交, 以提高实验对野外蚊子的相关性。此外, 殖民地是保持在最佳条件下, 以最大限度地提高他们的适用性开放的野外发布。

Introduction

伊蚊蚊蚊子负责传播世界上一些最重要的媒, 包括登革热、Zika 和基孔肯亚1。这些病毒正日益成为全球健康的威胁, 因为在热带地区的Ae. 蚊的广泛分布继续扩展234。雌性Ae. 蚊优先于人血的5 , 因此倾向于与人类紧密地生活在一起, 特别是在人口最稠密的城市地区。通过与人类的密切联系, 他们也适应在人工生境中繁殖, 包括轮胎、花盆、水槽和水箱6,7Ae. 蚊还可以很容易地适应实验室环境, 在从字段直接收集后, 它们无需任何特殊要求即可进行维护, 这与伊蚊属属8中的其他物种不同, 9,10。他们的易于维护已经看到他们广泛的研究在实验室中的广泛领域, 最终旨在控制蚊子可能传播的疾病。

传统上, arboviral 控制在很大程度上依赖于杀虫剂的使用来减少蚊子的数量。然而, 越来越多的兴趣的方法, 在实验室饲养的改良蚊子, 然后释放到自然的人口。释放蚊子可以修改基因11,12,13, 生物14,15, 通过辐照16, 化学处理17,18,或者使用组合技术19来抑制蚊子的数量, 或者用不耐 arboviral 传输的蚊子来替代它们, 如20

沃尔巴克是当前用作媒的生物控制代理的细菌,.最近在Ae. 蚊中引入了几株沃尔巴克, 实验使用胚胎微注射21,22,23,24。这些菌株降低了媒在蚊子中传播和复制的能力, 减少了它们的传输电位23,25,26,27,28.沃尔巴克感染由母亲传给后代 , 但某些菌株在感染的男性与未感染的女配时会导致不孕 ,22。因此,沃尔巴克-受感染的雄性可以大量释放, 以抑制自然蚊子的数量, 最近在其他的伊蚊属物种1529中演示了这一点。但是, 由于沃尔巴克还会在Ae. 蚊中抑制 arboviral 传输, 因此蚊子也可以被释放, 以更差的向量替换本地种群。使用沃尔巴克进行实验感染的Ae. 蚊现在正被释放到多个国家的字段中, 这些应用后一种方法是14,3031

基于沃尔巴克的 arboviral 控制方法依赖于对沃尔巴克、蚊子和环境之间的交互的正确理解。沃尔巴克在广泛的昆虫中自然发生, 而引入蚊子的菌株在它们的效果中是多种多样的32。由于新的沃尔巴克感染类型被引入到Ae. 蚊24中, 因此有必要在各种情况下对其对蚊子的适应性、繁殖和 arboviral 干扰的影响进行描述。因此, 需要在实验室进行严格的试验, 以评估沃尔巴克菌株在该领域取得成功的可能性。

使用沃尔巴克感染的Ae. 蚊的开放字段版本通常需要每发布区域数千到数万蚊子, 每个星期都要饲养14,3031。初始释放的成功可以通过释放蚊子的大尺寸, 以最大限度地提高其繁殖力33和交配成功3435。蚊子也应该适应他们将在野外经历的条件, 但是长期的实验室饲养可能会导致行为和生理学的变化, 这可能会影响到现场性能36,37, 38

我们描述了一个简单的协议, 在实验室中使用基本设备来饲养Ae. 蚊。该协议适用于野生型和沃尔巴克感染的蚊子, 后者可能需要特别注意, 因为有些沃尔巴克菌株对蚊子的生命有实质性影响-历史特征39,40. 饲养条件避免过度拥挤和争夺食物以生产出一致大小的蚊子, 这对媒介能力和体能实验都是至关重要的, 并确保蚊子在野外释放时是健康的41.我们还采取预防措施, 以减少选择压力和确保下一代从一个大的, 随机池取样, 以减少实验室适应和近亲繁殖。然而, 实验室环境与野外条件明显不同, 在放松条件下的长期维护可能会使蚊子在释放时的适应度降低到37,42,43.因此, 我们周期性地将雌性从实验室线交叉到野外收集的雄性, 从而在基因上类似于实验比较的菌落, 并适应目标领域的人口39。这些方法不需要任何专门的设备, 可以扩展到每星期为现场发布的数万人的后方。该议定书还优先考虑蚊子在几代人之内和不同的适宜性, 这是在自然种群中建立的昆虫的重要考量。该协议适用于大多数需要维护Ae. 蚊的实验室, 特别是在实验比较中, 蚊子和 relatability 的质量是很重要的。

Protocol

由墨尔本大学人类伦理委员会 (批准 #: 0723847) 批准对人体的蚊子进行血液喂养。所有志愿者都提供了书面同意。 1. 幼体饲养 注: 蚊子被关押在26±0.5 ° c 和50-70% 相对湿度, 与 12:12 h (光照: 暗) 光周期为这个殖民地维护协议。这些条件与澳大利亚凯恩斯的平均气候条件相似, 在Ae. 蚊生存和发展的最佳热范围内,44,45<…

Representative Results

图 4演示了次优营养对Ae. 蚊幼虫发育的影响。当容器提供每只幼虫每天或少于0.25 毫克的食物时, 雄性和雌性的发育时间就会增加, 而且与0.5 毫克食物的容器相比, 它的同步性更低。如果在幼体发育的整个过程中没有提供足够的食物, 这可能会对维护计划产生不利影响。缓慢发展的个体有被选择的危险, 血液喂养可能被延迟, 并且有更高的风险成?…

Discussion

按照此处提供的用于维护沃尔巴克感染的Ae. 蚊的协议, 应确保为实验和公开的现场发布提供一致质量的健康蚊子。与其他优先生产蚊子数量的协议相比 (参见参考57), 这些方法的重点是通过实施宽松的饲养条件, 在几代人内最大限度地提高他们的身体素质, 并跨越世代通过减少近亲繁殖, 选择和实验室适应。此协议也专门为ae. 蚊沃尔巴克感染而设计, 但…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们承认, 对, 克里斯柏鼎言, 彼得约翰逊和克莱尔多伊格为我们的殖民地维护方法的发展作出了贡献, 三名匿名的评论家为他们的建议, 帮助改进了原稿。我们的研究得到了国家卫生与医学研究理事会的项目赠款和奖学金, 以及惠康信托基金的翻译资助。PAR 是澳大利亚政府研究培训项目奖学金获得者。

Materials

Wild type Aedes aegypti Collected from field locations in Queensland, Australia, see Yeap and others39 for details
w Mel-infected Aedes aegypti Provided by Monash University. Refer to Walker and others23 for information on the strain
w AlbB-infected Aedes aegypti Provided by Monash University. Refer to Xi and others21 for information on the strain
w MelPop-infected Aedes aegypti Provided by Monash University. Refer to McMeniman and others22 for information on the strain
Instant dried yeast Lowan Stimulates egg hatching. Found in general grocery stores. Other brands may be used
5 L plastic tub Quadrant Q110950 Used for hatching and rearing larvae. Other products may be used
Fish Food (Tetramin Tropical Tablets) Tetra 16152 Provided to larvae as a source of food. Web address: https://www.amazon.com/Tetra-16152-TetraMin-Tropical-10-93-Ounce/dp/B00025Z6SE
Plastic containers Used for rearing larvae. Any plastic container above 500 mL should be suitable
Glass pipette Used for transferring larvae and pupae between containers. Web address: https://www.aliexpress.com/item/10Pcs-Durable-Long-Glass-Experiment-Medical-Pipette-Dropper-Transfer-Pipette-Lab-Supplies-With-Red-Rubber-Cap/32704471109.html?spm=2114.40010308.4.2.py4Kez
Clicker counter RS Pro 710-5212 Used to assist in the counting of larvae, pupae and eggs. Web address: http://au.rs-online.com/web/p/products/7105212/?grossPrice=Y
Rearing trays Gratnells Used for rearing larvae. Web address: http://www.gratnells.com
Nylon mesh Used to transfer larvae and pupae to containers of fresh water. Other brands may be used. Web address: https://www.spotlightstores.com/fabrics-yarn/specialty-apparel-fabrics/nettings-tulles/nylon-netting/p/BP80046941001-white
Cages BugDorm DP1000 Houses adult mosquitoes. Alternative products may be used. Web address: http://bugdorm.megaview.com.tw/bugdorm-1-insect-rearing-cage-30x30x30-cm-pack-of-one-p-29.html
35 mL plastic cup Huhtamaki AA272225 Used to provide water or sucrose to adult mosquitoes. Other brands may be used
35 mL plastic cup lid Huhtamaki GB030005 Used to provide sucrose to adult mosquitoes. Other brands may be used
Cotton wool Cutisoft 71841-13 Moist cotton wool is provided as a source of water to adults. Other brands may be used
White Sugar Provided as a source of sugar to adult mosquitoes. Found in general grocery stores
Rope M Recht Accessories C323C/W Used to provide sucrose solution to adults. Other brands may be used. Web address: https://mrecht.com.au/haberdashery/braids-cords-and-tapes/cords/plaited-cord/cotton/
Plastic cup (large) Used as an oviposition container. Any plastic cup that holds 100 mL of water should be suitable
Sandpaper Norton Master Painters CE015962 Provided as an oviposition substrate. Alternative products may be used, but we use this brand because it is relatively odorless. Lighter colors are used for contrast with eggs. Web address: https://www.bolt.com.au/115mm-36m-master-painters-bulk-roll-p80-medium-p-9396.html
Filter paper Whatman 1001-150 Used as an alternative oviposition substrate. Other brands may be used
Latex gloves SemperGuard Z560979 Prevents mosquito bites on hands when blood feeding. Other brands may be used. Web address: http://www.sempermed.com/en/products/detail/semperguardR_latex_puderfrei_innercoated/

References

  1. Mayer, S. V., Tesh, R. B., Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop. 166, 155-163 (2017).
  2. Campbell, L. P., et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 370 (1665), (2015).
  3. Kraemer, M. U., et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 4, (2015).
  4. Carvalho, B. M., Rangel, E. F., Vale, M. M. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull Entomol Res. , 1-12 (2016).
  5. Scott, T. W., et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Ent. 37 (1), 77-88 (2000).
  6. Cheong, W. Preferred Aedes aegypti larval habitats in urban areas. Bull World Health Organ. 36 (4), 586-589 (1967).
  7. Barker-Hudson, P., Jones, R., Kay, B. H. Categorization of domestic breeding habitats of Aedes aegypti (Diptera: Culicidae) in Northern Queensland, Australia. J Med Ent. 25 (3), 178-182 (1988).
  8. Watson, T. M., Marshall, K., Kay, B. H. Colonization and laboratory biology of Aedes notoscriptus from Brisbane, Australia. J Am Mosq Control Assoc. 16 (2), 138-142 (2000).
  9. Williges, E., et al. Laboratory colonization of Aedes japonicus japonicus. J Am Mosq Control Assoc. 24 (4), 591-593 (2008).
  10. Munstermann, L. E. . The Molecular Biology of Insect Disease Vectors. , 13-20 (1997).
  11. McDonald, P., Hausermann, W., Lorimer, N. Sterility introduced by release of genetically altered males to a domestic population of Aedes aegypti at the Kenya coast. Am J Trop Med Hyg. 26 (3), 553-561 (1977).
  12. Rai, K., Grover, K., Suguna, S. Genetic manipulation of Aedes aegypti: incorporation and maintenance of a genetic marker and a chromosomal translocation in natural populations. Bull World Health Organ. 48 (1), 49-56 (1973).
  13. Harris, A. F., et al. Field performance of engineered male mosquitoes. Nature Biotechnol. 29 (11), 1034-1037 (2011).
  14. Hoffmann, A. A., et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 476 (7361), 454-457 (2011).
  15. O’Connor, L., et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis. 6 (11), e1797 (2012).
  16. Morlan, H. B. Field tests with sexually sterile males for control of Aedes aegypti. Mosquito news. 22 (3), 295-300 (1962).
  17. Grover, K. K., et al. Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomol Exp Appl. 20 (1), 8-18 (1976).
  18. Seawright, J., Kaiser, P., Dame, D. Mating competitiveness of chemosterilized hybrid males of Aedes aegypti (L.) in field tests. Mosq News. 37 (4), 615-619 (1977).
  19. Zhang, D., Lees, R. S., Xi, Z., Gilles, J. R., Bourtzis, K. Combining the sterile insect technique with Wolbachia-based approaches: II- a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PloS One. 10 (8), e0135194 (2015).
  20. McGraw, E. A., O’Neill, S. L. Beyond insecticides: new thinking on an ancient problem. Nature Rev Microbiol. 11 (3), 181-193 (2013).
  21. Xi, Z., Khoo, C. C., Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 310 (5746), 326-328 (2005).
  22. McMeniman, C. J., et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 323 (5910), 141-144 (2009).
  23. Walker, T., et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476 (7361), 450-453 (2011).
  24. Joubert, D. A., et al. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a ppotential approach for future resistance management. PLoS Pathog. 12 (2), e1005434 (2016).
  25. Ferguson, N. M., et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 7 (279), 279ra237 (2015).
  26. Aliota, M. T., Peinado, S. A., Velez, I. D., Osorio, J. E. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Sci Rep. 6, 28792 (2016).
  27. van den Hurk, A. F., et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 6 (11), e1892 (2012).
  28. Moreira, L. A., et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 139 (7), 1268-1278 (2009).
  29. Mains, J. W., Brelsfoard, C. L., Rose, R. I., Dobson, S. L. Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes. Sci Rep. 6, 33846 (2016).
  30. Nguyen, T. H., et al. Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors. 8, 563 (2015).
  31. Garcia Gde, A., Dos Santos, L. M., Villela, D. A., Maciel-de-Freitas, R. Using Wolbachia releases to estimate Aedes aegypti (Diptera: Culicidae) population size and survival. PloS One. 11 (8), e0160196 (2016).
  32. Hoffmann, A. A., Ross, P. A., Rašić, G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl. 8 (8), 751-768 (2015).
  33. Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 36 (3), 165-172 (1990).
  34. Ponlawat, A., Harrington, L. C. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg. 80 (3), 395-400 (2009).
  35. Segoli, M., Hoffmann, A. A., Lloyd, J., Omodei, G. J., Ritchie, S. A. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti. PLoS Negl Trop Dis. 8 (12), e3294 (2014).
  36. Imam, H., Zarnigar, G., Sofi, A., Seikh, The basic rules and methods of mosquito rearing (Aedes aegypti). Trop Parasitol. 4 (1), 53-55 (2014).
  37. Spitzen, J., Takken, W. Malaria mosquito rearing-maintaining quality and quantity of laboratory-reared insects. Proc Neth Entomol Soc Meet. 16, 95-100 (2005).
  38. Lorenz, L., Beaty, B. J., Aitken, T. H. G., Wallis, G. P., Tabachnick, W. J. The effect of colonization upon Aedes aegypti susceptibility to oral infection with Yellow Fever virus. Am J Trop Med Hyg. 33 (4), 690-694 (1984).
  39. Yeap, H. L., et al. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics. 187 (2), 583-595 (2011).
  40. Turley, A. P., Moreira, L. A., O’Neill, S. L., McGraw, E. A. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis. 3 (9), e516 (2009).
  41. Yeap, H. L., Endersby, N. M., Johnson, P. H., Ritchie, S. A., Hoffmann, A. A. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg. 89 (1), 78-92 (2013).
  42. Leftwich, P. T., Bolton, M., Chapman, T. Evolutionary biology and genetic techniques for insect control. Evol Appl. 9 (16), 212-230 (2016).
  43. Calkins, C., Parker, A. . Sterile Insect Technique. , 269-296 (2005).
  44. Tun-Lin, W., Burkot, T., Kay, B. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol. 14 (1), 31-37 (2000).
  45. Richardson, K., Hoffmann, A. A., Johnson, P., Ritchie, S., Kearney, M. R. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution. J Med Ent. 48 (4), 914-923 (2011).
  46. Richardson, K. M., Hoffmann, A. A., Johnson, P., Ritchie, S. R., Kearney, M. R. A replicated comparison of breeding-container suitability for the dengue vector Aedes aegypti in tropical and temperate Australia. Austral Ecol. 38 (2), 219-229 (2013).
  47. Ross, P. A., et al. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 13 (1), e1006006 (2017).
  48. Gjullin, C., Hegarty, C., Bollen, W. The necessity of a low oxygen concentration for the hatching of Aedes mosquito eggs. J Cell Physiol. 17 (2), 193-202 (1941).
  49. Axford, J. K., Ross, P. A., Yeap, H. L., Callahan, A. G., Hoffmann, A. A. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg. 94 (3), 507-516 (2016).
  50. Degner, E. C., Harrington, L. C. Polyandry depends on postmating time interval in the dengue vector Aedes aegypti. Am J Trop Med Hyg. 94 (4), 780-785 (2016).
  51. Bentley, M. D., Day, J. F. Chemical ecology and behavioral aspects of mosquito oviposition. Ann Rev Entomol. 34 (1), 401-421 (1989).
  52. Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C., Scott, T. W. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl Trop Dis. 5 (4), e1015 (2011).
  53. Meola, R. The influence of temperature and humidity on embryonic longevity in Aedes aegypti. Ann Entomol Soc Am. 57 (4), 468-472 (1964).
  54. Faull, K. J., Williams, C. R. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin. J Vector Ecol. 40 (2), 292-300 (2015).
  55. McMeniman, C. J., O’Neill, S. L. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis. 4 (7), e748 (2010).
  56. Ross, P. A., Endersby, N. M., Hoffmann, A. A. Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis. 10 (1), e0004320 (2016).
  57. Carvalho, D. O., et al. Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Vis Exp. (83), e3579 (2014).
  58. Benedict, M. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 19 (8), 349-355 (2003).
  59. Lee, S. F., White, V. L., Weeks, A. R., Hoffmann, A. A., Endersby, N. M. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol. 78 (13), 4740-4743 (2012).
  60. Corbin, C., Heyworth, E. R., Ferrari, J., Hurst, G. D. Heritable symbionts in a world of varying temperature. Heredity. 118 (1), 10-20 (2017).
  61. Day, J. F., Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity patterns. J Med Ent. 21 (6), 732-740 (1984).
  62. Gonzales, K. K., Hansen, I. A. Artificial diets for mosquitoes. Int J Environ Res Public Health. 13 (12), (2016).
  63. McMeniman, C. J., Hughes, G. L., O’Neill, S. L. A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Ent. 48 (1), 76-84 (2011).
  64. Caragata, E. P., Rances, E., O’Neill, S. L., McGraw, E. A. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol. 67 (1), 205-218 (2014).
  65. Suh, E., Fu, Y., Mercer, D. R., Dobson, S. L. Interaction of Wolbachia and bloodmeal type in artificially infected Aedes albopictus (Diptera: Culicidae). J Med Entomol. , (2016).
  66. Thangamani, S., Huang, J., Hart, C. E., Guzman, H., Tesh, R. B. Vertical transmission of Zika virus in Aedes aegypti mosquitoes. Am J Trop Med Hyg. 95 (5), 1169-1173 (2016).

Play Video

Cite This Article
Ross, P. A., Axford, J. K., Richardson, K. M., Endersby-Harshman, N. M., Hoffmann, A. A. Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia. J. Vis. Exp. (126), e56124, doi:10.3791/56124 (2017).

View Video