Summary

Mantener los mosquitos Aedes aegypti infectados con Wolbachia

Published: August 14, 2017
doi:

Summary

Los mosquitos Aedes aegypti infectados con Wolbachia están siendo liberados en las poblaciones naturales para suprimir la transmisión de arbovirus. Se describen métodos para posterior Ae. aegypti con Wolbachia infecciones en el laboratorio para los experimentos y la liberación del campo, tomar precauciones para reducir al mínimo la selección y adaptación de laboratorio.

Abstract

Los mosquitos Aedes aegypti infectados experimentalmente con Wolbachia se están utilizando en los programas para controlar la propagación de arbovirus como el dengue, el chikungunya y Zika. Wolbachia-mosquitos infectados pueden ser lanzados en el campo o bien reducir el tamaño de la población a través de cruzamientos incompatibles o transformar las poblaciones de mosquitos que son refractarios a la transmisión del virus. Para que estas estrategias tener éxito, los mosquitos liberados en el campo del laboratorio deben ser competitivos con los mosquitos nativos. Sin embargo, mantener los mosquitos en el laboratorio resulta en endogamia, deriva genética y adaptación de laboratorio que puede reducir su aptitud en el campo y puede confundir los resultados de experimentos. Para probar la idoneidad de diferentes infecciones de Wolbachia para el despliegue en el campo, es necesario mantener los mosquitos en un entorno de laboratorio controlado a través de múltiples generaciones. Se describe un protocolo simple para mantener los mosquitos Ae. aegypti en el laboratorio, que es conveniente para ambos Wolbachia-mosquitos infectados y tipo salvaje. Los métodos minimizan la adaptación de laboratorio y aplicación exogamia para aumentar la relevancia de los experimentos a los mosquitos de campo. Además, las colonias se mantienen en condiciones óptimas para maximizar su aptitud para los lanzamientos de campo abierto.

Introduction

Los mosquitos Aedes aegypti son responsables para la transmisión de los arbovirus más importantes del mundo, incluyendo dengue, Zika y chikungunya1. Estos virus se están convirtiendo en una amenaza creciente para la salud global, como la distribución generalizada de Ae. aegypti en las zonas tropicales continúa ampliando2,3,4. Hembra de Ae. aegypti preferentemente se alimentan de sangre humana5 y así tienden a vivir en proximidad cercana a los seres humanos, particularmente en las zonas urbanas donde las poblaciones son más densas. A través de esta asociación cercana con los seres humanos también se han adaptado para reproducirse en ambientes artificiales, como neumáticos, macetas, canaletas y tanques de agua6,7. AE. aegypti también fácilmente adaptarse a entornos de laboratorio donde se puede mantener sin cualquier requisito especial después de ser recogido directamente en el campo, a diferencia de algunas otras especies de Aedes género8, 9,10. Su facilidad de mantenimiento ha visto ampliamente estudiado en el laboratorio en una amplia gama de campos, en última instancia, con el objetivo de controlar los mosquitos de enfermedades puede transmitir.

Tradicionalmente, control por arbovirus depende en gran medida el uso de insecticidas para reducir poblaciones de mosquitos. Sin embargo, hay creciente interés en los enfoques donde los mosquitos modificados son criados en el laboratorio y luego liberados en las poblaciones naturales. Los mosquitos liberados pueden modificarse genéticamente11,12,13, biológicamente14,15, a través de irradiación16, tratamiento químico17,18, o combinación de técnicas19 para suprimir las poblaciones de mosquitos o reemplazarlos con los mosquitos que son refractarios a transmisión arboviral20.

Wolbachia son bacterias que se utilizan actualmente como un agente de control biológico para arbovirus. Varias cepas de Wolbachia se introdujeron recientemente en Ae. aegypti experimentalmente usando microinjection embrionario21,22,23,24. Estas cepas reducen la capacidad de arbovirus a difundir y replicar en el mosquito, disminuyendo su transmisión potencial23,25,26,27,28 . Wolbachia infecciones se transmiten de madre a hijos, sin embargo algunas cepas inducen esterilidad cuando los machos infectados aparean con las hembras no infectadas22. Wolbachia-varones infectados por lo tanto pueden ser lanzados en grandes cantidades para suprimir las poblaciones de mosquitos naturales, recientemente demostradas en otras especies de Aedes 15,29. Sin embargo, puesto que Wolbachia también inhiben la transmisión arboviral en Ae. aegypti, mosquitos pueden también lanzar para reemplazar las poblaciones nativas con vectores más pobres. Ae. aegypti infectado experimentalmente con Wolbachia ahora están siendo liberados en el campo en varios países con este último enfoque14,30,31.

Wolbachia-basada en enfoques de control arboviral dependen de una sólida comprensión de las interacciones entre Wolbachia, el mosquito y el medio ambiente. Wolbachia ocurre naturalmente en una amplia gama de insectos, y las tensiones que introducen los mosquitos son diversas en sus efectos32. Como se introducen nuevos tipos de infección por Wolbachia en Ae. aegypti24, es necesario caracterizar cada cepa por sus efectos en la aptitud de mosquito, reproducción y arboviral interferencia en una variedad de condiciones. Experimentación rigurosa en el laboratorio, por tanto, es necesaria para evaluar el potencial de las cepas de Wolbachia tener éxito en el campo.

Notas de campo abierto de Ae. aegypti con Wolbachia infecciones a menudo pueden requerir miles a decenas de miles de mosquitos por la zona de lanzamiento para ser criaban cada semana14,30,31. El éxito de los lanzamientos iniciales puede mejorarse liberando mosquitos de gran tamaño para maximizar su fecundidad33 y acoplamiento éxito34,35. Los mosquitos también deben ser adaptados a las condiciones que se experimentan en el campo, cría de laboratorio sin embargo a largo plazo puede causar cambios en comportamiento y fisiología que podría afectar el campo rendimiento36,37, 38.

Se describe un protocolo simple para la cría de Ae. aegypti en el laboratorio utilizando equipamiento básico. Este protocolo es conveniente para ambos tipo de salvaje y Wolbachia-infectados por mosquitos, que puede requerir especial atención ya que algunas cepas de Wolbachia tienen efectos sustanciales sobre la historia de la vida rasgos de mosquito39, 40. las condiciones de cría evitar el hacinamiento y la competencia por el alimento producir mosquitos de tamaño constante, que es crítica para la competencia de vector y los experimentos de fitness y asegura que los mosquitos son saludables para el lanzamiento de campo41 . También tomamos precauciones para minimizar la adaptación del laboratorio y la endogamia mediante la reducción de presiones selectivas y asegurándose de que la próxima generación se muestrea de una piscina grande, al azar. Sin embargo, los entornos de laboratorio son claramente diferentes de las condiciones de campo, y mantenimiento a largo plazo en condiciones relajadas podría reducir la capacidad de los mosquitos al soltar en el campo37,42,43 . Por lo tanto cruzamos las hembras de líneas de laboratorio al campo los hombres periódicamente, dando lugar a colonias que son genéticamente similares comparaciones experimentales y que se adaptan a la meta de población campo39. Los métodos no requieren de ningún equipo especializado y pueden ampliarse a posterior decenas de miles de personas por semana para los lanzamientos de campo. El protocolo también da prioridad a la aptitud de mosquitos dentro y a través de generaciones, una consideración importante para los insectos destinados al establecimiento de las poblaciones naturales. El protocolo es conveniente para la mayoría de los laboratorios que requieren mantenimiento de Ae. aegypti, especialmente para las comparaciones experimentales donde una calidad constante de los mosquitos y relatability al campo son importantes.

Protocol

Sangre alimentación de los mosquitos en seres humanos fue aprobada por la Universidad de Melbourne Comité de ética humana (aprobación #: 0723847). Todos los voluntarios siempre informaron consentimiento. 1. larvas de crianza Nota: Los mosquitos se llevan a cabo en 26 ± 0,5 ° C y 50-70% de humedad relativa, con un fotoperiodo de 12:12 h (luz: obscuridad) para este protocolo de mantenimiento de la Colonia. Estas condiciones son similares a las condiciones climáti…

Representative Results

Figura 4 muestra los efectos de la nutrición subóptima en el desarrollo de larvas de Ae. aegypti . Cuando contenedores cuentan con 0,25 mg de alimento por larva por día o menos, aumenta el tiempo de desarrollo para hombres y mujeres, y menos sincrónico que en contenedores cuenta con 0.5 mg de alimento. Si no se proporciona alimentación adecuada durante toda la duración del desarrollo larvario, esto podría tener un impacto adverso en el program…

Discussion

Siguiendo el protocolo que presentamos para el mantenimiento de Wolbachia-infectados Ae. aegypti deben garantizar que los mosquitos sanos de una calidad constante se producen para los experimentos y abren notas de campo. A diferencia de otros protocolos que prioricen la producción de grandes cantidades de mosquitos (véase la referencia57), los métodos se centran en maximizar su aptitud, tanto dentro de las generaciones mediante la implementación de las condiciones de cría re…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Reconocemos Heng Lin Yeap, Chris Paton, Petrina y Clare Doig por sus contribuciones al desarrollo de nuestros métodos de mantenimiento de la Colonia y Johnson tres revisores anónimos por sus sugerencias que ayudaron a mejorar el manuscrito. Nuestra investigación es apoyada por un programa de subvención y beca de AAH del nacional salud y donación de Consejo de investigación médica y una traducción de la Wellcome Trust. PAR es un recipiente de un australiano gobierno investigación beca programa de formación.

Materials

Wild type Aedes aegypti Collected from field locations in Queensland, Australia, see Yeap and others39 for details
w Mel-infected Aedes aegypti Provided by Monash University. Refer to Walker and others23 for information on the strain
w AlbB-infected Aedes aegypti Provided by Monash University. Refer to Xi and others21 for information on the strain
w MelPop-infected Aedes aegypti Provided by Monash University. Refer to McMeniman and others22 for information on the strain
Instant dried yeast Lowan Stimulates egg hatching. Found in general grocery stores. Other brands may be used
5 L plastic tub Quadrant Q110950 Used for hatching and rearing larvae. Other products may be used
Fish Food (Tetramin Tropical Tablets) Tetra 16152 Provided to larvae as a source of food. Web address: https://www.amazon.com/Tetra-16152-TetraMin-Tropical-10-93-Ounce/dp/B00025Z6SE
Plastic containers Used for rearing larvae. Any plastic container above 500 mL should be suitable
Glass pipette Used for transferring larvae and pupae between containers. Web address: https://www.aliexpress.com/item/10Pcs-Durable-Long-Glass-Experiment-Medical-Pipette-Dropper-Transfer-Pipette-Lab-Supplies-With-Red-Rubber-Cap/32704471109.html?spm=2114.40010308.4.2.py4Kez
Clicker counter RS Pro 710-5212 Used to assist in the counting of larvae, pupae and eggs. Web address: http://au.rs-online.com/web/p/products/7105212/?grossPrice=Y
Rearing trays Gratnells Used for rearing larvae. Web address: http://www.gratnells.com
Nylon mesh Used to transfer larvae and pupae to containers of fresh water. Other brands may be used. Web address: https://www.spotlightstores.com/fabrics-yarn/specialty-apparel-fabrics/nettings-tulles/nylon-netting/p/BP80046941001-white
Cages BugDorm DP1000 Houses adult mosquitoes. Alternative products may be used. Web address: http://bugdorm.megaview.com.tw/bugdorm-1-insect-rearing-cage-30x30x30-cm-pack-of-one-p-29.html
35 mL plastic cup Huhtamaki AA272225 Used to provide water or sucrose to adult mosquitoes. Other brands may be used
35 mL plastic cup lid Huhtamaki GB030005 Used to provide sucrose to adult mosquitoes. Other brands may be used
Cotton wool Cutisoft 71841-13 Moist cotton wool is provided as a source of water to adults. Other brands may be used
White Sugar Provided as a source of sugar to adult mosquitoes. Found in general grocery stores
Rope M Recht Accessories C323C/W Used to provide sucrose solution to adults. Other brands may be used. Web address: https://mrecht.com.au/haberdashery/braids-cords-and-tapes/cords/plaited-cord/cotton/
Plastic cup (large) Used as an oviposition container. Any plastic cup that holds 100 mL of water should be suitable
Sandpaper Norton Master Painters CE015962 Provided as an oviposition substrate. Alternative products may be used, but we use this brand because it is relatively odorless. Lighter colors are used for contrast with eggs. Web address: https://www.bolt.com.au/115mm-36m-master-painters-bulk-roll-p80-medium-p-9396.html
Filter paper Whatman 1001-150 Used as an alternative oviposition substrate. Other brands may be used
Latex gloves SemperGuard Z560979 Prevents mosquito bites on hands when blood feeding. Other brands may be used. Web address: http://www.sempermed.com/en/products/detail/semperguardR_latex_puderfrei_innercoated/

References

  1. Mayer, S. V., Tesh, R. B., Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop. 166, 155-163 (2017).
  2. Campbell, L. P., et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 370 (1665), (2015).
  3. Kraemer, M. U., et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 4, (2015).
  4. Carvalho, B. M., Rangel, E. F., Vale, M. M. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull Entomol Res. , 1-12 (2016).
  5. Scott, T. W., et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Ent. 37 (1), 77-88 (2000).
  6. Cheong, W. Preferred Aedes aegypti larval habitats in urban areas. Bull World Health Organ. 36 (4), 586-589 (1967).
  7. Barker-Hudson, P., Jones, R., Kay, B. H. Categorization of domestic breeding habitats of Aedes aegypti (Diptera: Culicidae) in Northern Queensland, Australia. J Med Ent. 25 (3), 178-182 (1988).
  8. Watson, T. M., Marshall, K., Kay, B. H. Colonization and laboratory biology of Aedes notoscriptus from Brisbane, Australia. J Am Mosq Control Assoc. 16 (2), 138-142 (2000).
  9. Williges, E., et al. Laboratory colonization of Aedes japonicus japonicus. J Am Mosq Control Assoc. 24 (4), 591-593 (2008).
  10. Munstermann, L. E. . The Molecular Biology of Insect Disease Vectors. , 13-20 (1997).
  11. McDonald, P., Hausermann, W., Lorimer, N. Sterility introduced by release of genetically altered males to a domestic population of Aedes aegypti at the Kenya coast. Am J Trop Med Hyg. 26 (3), 553-561 (1977).
  12. Rai, K., Grover, K., Suguna, S. Genetic manipulation of Aedes aegypti: incorporation and maintenance of a genetic marker and a chromosomal translocation in natural populations. Bull World Health Organ. 48 (1), 49-56 (1973).
  13. Harris, A. F., et al. Field performance of engineered male mosquitoes. Nature Biotechnol. 29 (11), 1034-1037 (2011).
  14. Hoffmann, A. A., et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 476 (7361), 454-457 (2011).
  15. O’Connor, L., et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis. 6 (11), e1797 (2012).
  16. Morlan, H. B. Field tests with sexually sterile males for control of Aedes aegypti. Mosquito news. 22 (3), 295-300 (1962).
  17. Grover, K. K., et al. Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomol Exp Appl. 20 (1), 8-18 (1976).
  18. Seawright, J., Kaiser, P., Dame, D. Mating competitiveness of chemosterilized hybrid males of Aedes aegypti (L.) in field tests. Mosq News. 37 (4), 615-619 (1977).
  19. Zhang, D., Lees, R. S., Xi, Z., Gilles, J. R., Bourtzis, K. Combining the sterile insect technique with Wolbachia-based approaches: II- a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PloS One. 10 (8), e0135194 (2015).
  20. McGraw, E. A., O’Neill, S. L. Beyond insecticides: new thinking on an ancient problem. Nature Rev Microbiol. 11 (3), 181-193 (2013).
  21. Xi, Z., Khoo, C. C., Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 310 (5746), 326-328 (2005).
  22. McMeniman, C. J., et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 323 (5910), 141-144 (2009).
  23. Walker, T., et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476 (7361), 450-453 (2011).
  24. Joubert, D. A., et al. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a ppotential approach for future resistance management. PLoS Pathog. 12 (2), e1005434 (2016).
  25. Ferguson, N. M., et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 7 (279), 279ra237 (2015).
  26. Aliota, M. T., Peinado, S. A., Velez, I. D., Osorio, J. E. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Sci Rep. 6, 28792 (2016).
  27. van den Hurk, A. F., et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 6 (11), e1892 (2012).
  28. Moreira, L. A., et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 139 (7), 1268-1278 (2009).
  29. Mains, J. W., Brelsfoard, C. L., Rose, R. I., Dobson, S. L. Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes. Sci Rep. 6, 33846 (2016).
  30. Nguyen, T. H., et al. Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors. 8, 563 (2015).
  31. Garcia Gde, A., Dos Santos, L. M., Villela, D. A., Maciel-de-Freitas, R. Using Wolbachia releases to estimate Aedes aegypti (Diptera: Culicidae) population size and survival. PloS One. 11 (8), e0160196 (2016).
  32. Hoffmann, A. A., Ross, P. A., Rašić, G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl. 8 (8), 751-768 (2015).
  33. Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 36 (3), 165-172 (1990).
  34. Ponlawat, A., Harrington, L. C. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg. 80 (3), 395-400 (2009).
  35. Segoli, M., Hoffmann, A. A., Lloyd, J., Omodei, G. J., Ritchie, S. A. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti. PLoS Negl Trop Dis. 8 (12), e3294 (2014).
  36. Imam, H., Zarnigar, G., Sofi, A., Seikh, The basic rules and methods of mosquito rearing (Aedes aegypti). Trop Parasitol. 4 (1), 53-55 (2014).
  37. Spitzen, J., Takken, W. Malaria mosquito rearing-maintaining quality and quantity of laboratory-reared insects. Proc Neth Entomol Soc Meet. 16, 95-100 (2005).
  38. Lorenz, L., Beaty, B. J., Aitken, T. H. G., Wallis, G. P., Tabachnick, W. J. The effect of colonization upon Aedes aegypti susceptibility to oral infection with Yellow Fever virus. Am J Trop Med Hyg. 33 (4), 690-694 (1984).
  39. Yeap, H. L., et al. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics. 187 (2), 583-595 (2011).
  40. Turley, A. P., Moreira, L. A., O’Neill, S. L., McGraw, E. A. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis. 3 (9), e516 (2009).
  41. Yeap, H. L., Endersby, N. M., Johnson, P. H., Ritchie, S. A., Hoffmann, A. A. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg. 89 (1), 78-92 (2013).
  42. Leftwich, P. T., Bolton, M., Chapman, T. Evolutionary biology and genetic techniques for insect control. Evol Appl. 9 (16), 212-230 (2016).
  43. Calkins, C., Parker, A. . Sterile Insect Technique. , 269-296 (2005).
  44. Tun-Lin, W., Burkot, T., Kay, B. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol. 14 (1), 31-37 (2000).
  45. Richardson, K., Hoffmann, A. A., Johnson, P., Ritchie, S., Kearney, M. R. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution. J Med Ent. 48 (4), 914-923 (2011).
  46. Richardson, K. M., Hoffmann, A. A., Johnson, P., Ritchie, S. R., Kearney, M. R. A replicated comparison of breeding-container suitability for the dengue vector Aedes aegypti in tropical and temperate Australia. Austral Ecol. 38 (2), 219-229 (2013).
  47. Ross, P. A., et al. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 13 (1), e1006006 (2017).
  48. Gjullin, C., Hegarty, C., Bollen, W. The necessity of a low oxygen concentration for the hatching of Aedes mosquito eggs. J Cell Physiol. 17 (2), 193-202 (1941).
  49. Axford, J. K., Ross, P. A., Yeap, H. L., Callahan, A. G., Hoffmann, A. A. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg. 94 (3), 507-516 (2016).
  50. Degner, E. C., Harrington, L. C. Polyandry depends on postmating time interval in the dengue vector Aedes aegypti. Am J Trop Med Hyg. 94 (4), 780-785 (2016).
  51. Bentley, M. D., Day, J. F. Chemical ecology and behavioral aspects of mosquito oviposition. Ann Rev Entomol. 34 (1), 401-421 (1989).
  52. Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C., Scott, T. W. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl Trop Dis. 5 (4), e1015 (2011).
  53. Meola, R. The influence of temperature and humidity on embryonic longevity in Aedes aegypti. Ann Entomol Soc Am. 57 (4), 468-472 (1964).
  54. Faull, K. J., Williams, C. R. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin. J Vector Ecol. 40 (2), 292-300 (2015).
  55. McMeniman, C. J., O’Neill, S. L. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis. 4 (7), e748 (2010).
  56. Ross, P. A., Endersby, N. M., Hoffmann, A. A. Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis. 10 (1), e0004320 (2016).
  57. Carvalho, D. O., et al. Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Vis Exp. (83), e3579 (2014).
  58. Benedict, M. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 19 (8), 349-355 (2003).
  59. Lee, S. F., White, V. L., Weeks, A. R., Hoffmann, A. A., Endersby, N. M. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol. 78 (13), 4740-4743 (2012).
  60. Corbin, C., Heyworth, E. R., Ferrari, J., Hurst, G. D. Heritable symbionts in a world of varying temperature. Heredity. 118 (1), 10-20 (2017).
  61. Day, J. F., Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity patterns. J Med Ent. 21 (6), 732-740 (1984).
  62. Gonzales, K. K., Hansen, I. A. Artificial diets for mosquitoes. Int J Environ Res Public Health. 13 (12), (2016).
  63. McMeniman, C. J., Hughes, G. L., O’Neill, S. L. A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Ent. 48 (1), 76-84 (2011).
  64. Caragata, E. P., Rances, E., O’Neill, S. L., McGraw, E. A. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol. 67 (1), 205-218 (2014).
  65. Suh, E., Fu, Y., Mercer, D. R., Dobson, S. L. Interaction of Wolbachia and bloodmeal type in artificially infected Aedes albopictus (Diptera: Culicidae). J Med Entomol. , (2016).
  66. Thangamani, S., Huang, J., Hart, C. E., Guzman, H., Tesh, R. B. Vertical transmission of Zika virus in Aedes aegypti mosquitoes. Am J Trop Med Hyg. 95 (5), 1169-1173 (2016).

Play Video

Cite This Article
Ross, P. A., Axford, J. K., Richardson, K. M., Endersby-Harshman, N. M., Hoffmann, A. A. Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia. J. Vis. Exp. (126), e56124, doi:10.3791/56124 (2017).

View Video