Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

自己組織化ペプチドとアミノ酸の組み合わせを用いる水溶液中の疎水性化合物の溶解度

Published: September 20, 2017 doi: 10.3791/56158

Summary

このプロトコルでは、自己組織化ペプチドとアミノ酸のソリューションの組み合わせを使用して水溶液中における疎水性化合物の溶解の臨床応用可能な手段について説明します。私たちのメソッドは、臨床試験への溶解度と配信方法の安全で効率的な手段を欠いている疎水性治療の主要な制限を解決します。

Abstract

自己組織化ペプチド (Sap) は、臨床応用; 疎水性治療薬の配達のための有望な車自分の両親媒性プロパティは、それらが人間の体の水環境における疎水性化合物を溶解すること。しかし、自己組織化のペプチッド解決はある貧しい血液適合性 (例えば、低い浸透圧)、静脈内投与による臨床応用を妨げます。我々 は最近アミノ酸ソリューション (SAP AA) 薬物の溶解度を強化し臨床用途の要件に到達する製剤の浸透圧を高めると Sap を組み合わせた疎水性薬物送達のための一般化されたプラットフォームを開発しました。この定式化戦略は構造的に異なる 3 つの疎水性有機化合物-PP2、rottlerin、そしてクルクミン-その多様性を示すためのコンテキストで徹底的に調べた。さらに、エタノールと 2 つの異なる共同溶剤ジメチルスルホキシド (DMSO) 低および高濃度 20 自然既存アミノ酸 6 異なる Sap を分析することによって定式化コンポーネントを変更するの効果を調べた。ある疎水性薬剤と PP2、定式化阻害剤の治療的機能用のコンポーネントを最適化するに有効であることを証明した当社の戦略は、 in vitroin vivoの両方を観察されました。本稿では、疎水性化合物の溶解度より機能的な研究でこれらの製剤の潜在的な使用への第一歩としての解析 SAP AA の組み合わせを使用して私たちの一般的な定式化法について説明します。我々 は疎水性の化合物は、クルクミンの定式化の代表的な溶解度結果を含めるし、我々 の方法論が将来の生物学的研究と疾患モデルのためのプラットホームとして役立つ方法を話し合います。

Introduction

Sap は、生体材料再生医療1,2,3,43 D 足場として広く研究されているクラスです。もっと最近しかし、彼ら悪用されている彼らのユニークな生物学的特性の5,6,7,8のための治療薬の配達のための車として。Sap は、当然安定したナノ構造9、従って薬剤のカプセル化と保護の手段を提供するのにまとめます。Sap が両親媒性、疎水性と親水性アミノ酸の繰り返し、運転の特定のパターンから成るその自己集合9,10疎水性と親水性を媒体として提供することを許可します。環境。したがって、-疎水性薬物の臨床の配信がある非常に低いバイオアベイラビリティと体内吸収率水溶液環境11,12 -溶解度の不足のための Sap が配信として有望であります。車両。さらに、そのシーケンス パターンはまた、Sap が合理的にデザインし、任意のある薬剤との互換性を最大化 (すなわち官能基に基づく) 化合物や溶解性をさらに支援するために設計を意味します。

Sap は、多くの in vitroin vivoの設定13,14,15,16効果的な薬物送達車として適用されています。彼らはまた素晴らしい安全性と生体適合性を示しています。ただし、SAP 医薬品製剤の低浸透圧の変化のため彼らは使用できません臨床13のように静脈内注射のため。この拘束を考慮した我々 は最近開発された共同有毒な溶剤の使用を減らし定式化浸透圧を高めるためにアミノ酸ソリューションと Sap を組み合わせた戦略としたがって、臨床的意義。私たち Sap の構成要素であるアミノ酸を使用することを選んだ、すでに臨床的に受け入れ、および Sap と組み合わせて、彼らは17,18SAP の量を減らすために必要な間疎水性医薬品の溶解度を増します。

疎水性薬物の溶解度とその後の配信の一般化されたプラットフォームとして SAP AA の組み合わせを精査すると、マルチ ステップ スクリーニングのパイプラインを作成する、Src 阻害剤, PP2、モデルの疎水性化合物として適用することで我々 が。このプロセスで策定のコンポーネントを変更する-最終的にテスト 6 異なる Sap (低・高; 低既存の臨床応用および高濃度に基づく 2 異なる濃度ですべて 20 アミノ酸の効果を検討しました。濃度の 2 倍、3 倍、または水の各アミノ酸の最大溶解量に基づく臨床濃度 5 倍)、2 つ共溶剤- とさらに詳しい分析の PP2 を可溶化選択した組み合わせ。この製剤は、気管内および静脈内の管理を使用して体内のモデルと同様に、細胞培養での薬物デリバリー車両として効果的であると証明しました。同様に、私たちの仕事が可溶化複数の SAP AA の組み合わせの多様性に触れた水溶液環境で疎水性化合物構造的に異具体的には、薬 rottlerin とクルクミン18。この原稿は、SAP AA 定式化法と、スクリーニングのパイプラインの主要な手順の例としてクルクミン溶解度の分析について説明します。このプロトコルは、最適の SAP AA の組み合わせは、任意の指定された疎水性化合物の溶解のため画面にシンプルで再現性のある方法を提供します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1 アミノ酸溶液の調製

  1. 準備とラベル 2 つ 50 mL コニカル遠沈管各アミノ酸のため (両方の 1 つずつ " 低 " と " 高 " 濃度)。
  2. 精製水 (25 ° C で 18.2 MΩ·cm) を含む大きな 2 L フラスコを準備します
  3. 目的の濃度に到達する (グラム) の各アミノ酸の量を計算し、へらを使用して、それぞれ 50 mL 遠心チューブにアミノ酸の適切な量の重量を量ます
    。 : 注 " 高 " 2 つの濃度の荷電アミノ酸、PBS が水の代わりに使用されます。低水溶性と水に役立ちますではなく低 pH を維持するために PBS を使用するため濃度を増やすことはできません。さらに、濃度の計算は、各アミノ酸溶液の 40 mL の最終巻を使用して得られました。すべてのアミノ酸濃度は 表 3 のとおりです。汚染を避けるためにアミノ酸の間にヘラをすすぐこと。70% のエタノールで拭くことによって続いて水リンスをお勧めします
  4. 血清ピペットを使用して各 50 mL チューブに精製水 (または PBS) の追加 40 mL。キャップ管と渦または溶解するまで積極的に振る。水お風呂超音波 (室温、130 W、40 kHz) は、溶解プロセスを支援するも使用できます
    。 注: 次のアミノ酸ソリューションは、光に敏感とアルミ箔で覆われるべきである: トリプトファン、フェニルアラニン、チロシン (で構成される芳香族のリングのような構造)、システイン (反応性 - SH グループ).

2。SAP AA 溶液の調製

  1. 準備 20 mL シンチレーション バイアルの自己組織化ペプチド。指定された自己組織化ペプチド (各組み合わせは別の瓶で行われる) 準備されたアミノ酸ソリューションごとの 1 つのバイアルを準備します
  2. 各バイアルの底に約 1 ± 0.2 mg のペプチド (読みやすさは、0.1 mg までまたはより少し)、高性能分析バランスを使用して重量を量る。計量後キャップし、けるのペプチドの正確な重量を記録
  3. 自己組織化ペプチド (0.1 mg/mL 16 アミノ酸の長さで長いペプチドまたは 0.2 mg/mL の望ましい集中に達するために、ペプチドを含む各バイアルにアミノ酸溶液の (セクション 1) 適切なボリュームをピペットします。8 アミノ酸の長さの短いペプチド).
  4. Sonicate の 10 分、水風呂超音波発生装置 (130 W、40 kHz) 常温、バイアル内のソリューションは、完全に水浴に浸漬を確保します

3。薬物 DMSO 又は薬物エタノール ストック溶液の調製

  1. 結合 (この場合は、100 %dmso をクルクミン) における薬物の 1 mg と 100% エタノール 2 つストック ソリューションを作成する別の 1 mg.
    注: 我々 は DMSO と 400 μ L エタノール各溶媒の様々 な容解性のためそれぞれ 5 mg/mL と 2.5 mg/mL であった DMSO クルクミンとエタノール クルクミンの株式の 200 μ L を追加ただし、株式の集中する必要があります興味の疎水性医薬品によって調整されることに注意してくださいすることが重要です。薬物溶解性や効果的な生物濃縮などの要因は、この値を決定する際に重要です。また、覚えておいて、株式を希釈 100 倍、50 DMSO およびエタノール製剤でそれぞれ、SAP AA ソリューション (セクション 4 を参照) と組み合わせれば。製剤を必要な数に応じて株式の大きなボリュームを準備する好ましいことがあります – この場合、薬物の 1 mg 以上を使用するでしょう。在庫は-20 ° C で保存できます。氷と使用前に渦に雪解け
  2. 渦 15 用バイアル薬剤を完全に溶解する s.

4。医薬品製剤の調製

各製剤の
  1. 準備クリア 1.5 mL マイクロ遠心チューブ用。自己組織化ペプチド、アミノ酸 (と濃度)、目的のラベル チューブのさい、共溶媒
  2. 薬物 DMSO 株式または適切な遠心チューブに 20 μ L 薬エタノール株式の追加 10 μ L.
  3. 適切な SAP AA 酸水溶液を追加 990 μ L マイクロ遠心チューブ用薬 DMSO 株式および薬物エタノール株式を含むものに 980 μ L を含むというラベルの付いた。これは 1 %dmso または 2% エタノール 1 mL 医薬品製剤を生成します
    。 注: すべてのクルクミン製剤の最終濃度は 0.5 mg/mL プロトコルに従ってだった。もう一度、これが異なるが他の疎水性の化合物を使用しておよび/または異なるストック濃度で始まる (手順 3.1 参照)
  4. 30 は積極的に渦 s ができ、30 分の残りの部分に配合

5 溶解テスト

  1. 残りの期間、30 の渦を精力的に再び後 s.
  2. 遠心分離機の 14,220 x g で 1 分間で製剤
  3. (可視化) で沈殿を遠心管の底を分析します

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

疎水性薬剤、クルクミン、当然のことながら既存の証拠の原則として 1 つだけ SAP、EAK16 II との組み合わせで、低濃度のアミノ酸すべて 20 製剤をプロデュースしました。また、共溶媒として DMSO およびエタノールを使用して製剤をテストしました。合計では、これは 40 のクルクミン製剤をそれぞれ異なるコンポーネントを含む生産。SAP (計 6 個) のアミノ酸濃度その他の施設を含めました PP2、Src 阻害剤を使用して私たちの以前の研究を注意することが重要だ (臨床、高濃度だけでなく、)、480 の異なる製剤の合計を生産します。この研究のための SAP として EAK16 II を選択するときこの作品から動向は考慮しました。様々 な成分の濃度は、参考表 1表 2、および表 3に含まれます。すべて疎水性医薬品の製剤は、可視化により薬物の溶解度の上映され、遠心分離 (図 1) 後にソリューションが完全に任意の沈殿物の明確な場合は水溶性と見なされます。薬管の底に沈殿物が、これは非水溶性と見なされ、さらにテストを通らない。溶解度はテスト 3 通や 2 つの異なる個人; さらに、これらの結果を再現できない場合製剤もいないと見なされます本当に溶解します。

本研究でテスト 40 製剤のうち 7 製剤は正常にクルクミン (表 4) を解散しました。2 つの主要なトレンドを識別されるコンポーネントによって配合をグループ化: エタノール用と思われるより良い共溶媒溶解クルクミン、正荷電アミノ酸リジン (K) とアルギニン (R) はまたクルクミン (テーブルを溶解するための最適なコンポーネントをするよう4) です。 R、K、クルクミンがアルカリの状態 (図 1) で解散を明らかにするを含む製剤の色の変化に注意することは興味深い。そのような観察をするためのさまざまなコンポーネントのプロパティによってグループ製剤と便利です。

Figure 1
図 1: 雨量解析の例です。ペプチド EAK16 II、エタノール、および荷電アミノ酸を含むこれらのクルクミン製剤の沈殿物見ることができる明らかにマイクロ遠心チューブ用の遠心分離後。リジン (K) を含む製剤、アルギニン (R) またはアスパラギン酸 (D) 溶解クルクミン (沈殿物のない)、ヒスチジン (H) やグルタミン酸 (E) を含むがないに対し (赤丸部分を沈殿させる)。この図の拡大版を表示するのにはここをクリックしてください

薬物 製剤濃度 (mg/mL)
PP2 0.05
クルクミン 0.05
Rottlerin 0.02

表 1:製剤の使用薬剤の濃度.薬物製剤濃度には、それぞれが異なる生理活性濃度とも異なる負荷容量が異なります。

自己組織化ペプチド プロパティ 製剤濃度 (mg/mL)
EAK16-私 EAK 家族、長い 0.1
EAK16 II EAK 家族、長い 0.1
EAK16 IV EAK 家族、長い 0.1
EFK8 II 変更された EAK、短い 0.2
A6KE 界面活性剤のような短い 0.2
P6KE 界面活性剤のような短い 0.2

表 2: 自己組織化ペプチド製剤で使用されている濃度です。アミノ酸を添加、自己組織化ペプチドの小さな濃度のみが必要 (0.1 0.2 mg/mL)。短いペプチドは、長いペプチッド シーケンスの長さ (8/16 アミノ酸アミノ酸等) を半分を持っている彼らと比較して濃度 2 倍です。

Table 3
テーブル 3: 製剤で使用されているアミノ酸液の濃度.低濃度のアミノ酸は、それぞれの既存の臨床アプリケーションに基づいて選ばれました。高濃度は、2 x、3 x、または 5 臨床濃度 x と水の各アミノ酸の最大溶解度以内です。この図は、パチェコから変更されています。18

Table 4
表 4: 代表的な溶解度決算クルクミン。SAP AA の組み合わせ効果的にクルクミンを溶解溶解性スクリーニング後の概要です。この図は、パチェコから変更されています。18

Subscription Required. Please recommend JoVE to your librarian.

Discussion

定式化の手順でさまざまな重要な手順とトラブルシューティングの考慮すべき点があります。最初に、我々 はさまざまなコンポーネントと濃度が機能して、プロトコル全体で複数の渦ステップように全ての濃度が均一で正しいこと。高濃度、疎水性アミノ酸の解決策のいくつかがまだない完全に解散するボルテックス後、し、この場合、彼らすることができます動揺する精力的に手作業のプロセスを支援します。同様に、それは重要な SAP AA ソリューションは Sap は自然に傾向があるので手順 2.4 に示した超音波処理ステップを受けること SAP クラスターより均一な溶液で結果が断片化に骨材および超音波処理が役立ちます。第二に、指定された疎水性医薬品の在庫および SAP AA 製剤内最終濃度決まるべきである生物学的設定でその化合物の効果的な濃度。プロトコルは、このアクティブな濃度を反映するように適宜変更されます必要があります。さらに、薬剤積載量も考慮します。 重要な因子であります。そう、それぞれの薬のこの戦略を使用してユニークな積載能力を持ち、互換性に基づいて各 SAP AA の組み合わせが異なる薬物量をサポート可能性がありますです。これは、特定の化合物の最適な SAP AA の組み合わせを見つけるための検診の重要性を示しています。

他人に私たちの技術を使用する利点が多い具体的には、化合物のカプセル化と潜在的な配信のため単独での Sap を使用して従来の方法上大きな意義があります。前述のように、アミノ酸は、すでに臨床的に受け入れられているし、臨床シナリオで静脈注射が可能なように溶血活性が低下して浸透圧が増加 SAP 製剤にこれらのソリューションを追加します。また液汁だけが溶解度17,18のために十分ではない場合に疎水性化合物への溶解度が大きく、発見しました。Sap とアミノ酸の関係の複数の異なる組み合わせは、疎水性薬物の溶解度の高スループット方法画面への進出できます。動向を明らかにする詳細に分析できる溶解性データ我々 は、定式化コンポーネント (SAP またはアミノ酸) による結果をソート パターン各疎水性医薬品の重複する可能性がありますを示すことを発見しました。例として、正荷電アミノ酸は私たちの以前の研究を示した PP218負荷電アミノ酸が良かったに対しクルクミン (図 1) の溶解性を向上させます。これらの傾向は、化学構造が類似した溶解薬の特定のコンポーネントの適合性を判断するのに役立ちます。さらに、当社の溶解度画面のシンプルさは両方の利点と制限;それは簡単に実行できますが、(例えば、分光法又はガスクロマト グラフ法) のソリューション内で化合物の溶解度の実験的評価により技術と正確な方法があります。ただし、スクリーニングの戦略をこのプロトコルでは、SAP AA の組み合わせは、最高の薬物の溶解度とそれに応じて、さらなる分析の最高の潜在的な生物学的活性の迅速かつ効率的な選択できます。多くの製剤があるので自己組織化ペプチド、アミノ酸、アミノ酸濃度、共溶媒、(私たちの前の原稿18の合計 480) の異なる組み合わせは、これは最適な見つけることを絞り込むために必要なステップある薬剤の成分です。水溶性の薬剤を見つけること後、彼らはより技術的な方法によって溶解度の評価され、生物活性と安全性評価機能試金でさらに検証する必要があります。これらの機能の試金は、原稿を PP2 製剤18の最適化で説明している作り出された薬剤の使用目的に合わせて必要があります。他の疎水性化合物のプラットフォームの拡大と、トレンドと、溶解度を高めるためのメカニズムを明らかにする、特定の疎水性化合物の臨床製剤工学新しい Sap 支援します。

薬の潜在的なパイプラインの私たちの方法の嘘の未来は、その能力を自動化するだけでなく、提供します。粉末の重量を量ると形成プロセスにおける主要な時間制限要因である液体を調剤を含む多くのステップがあります。それは実験室の設定で実行する長いプロシージャのような見えるかもしれませんが、これらの手順を実行することができますは簡単にロボット装置を使用してを実行しました。同様に、メソッドには、同時に多くの疎水性薬物の溶解度をテストするために、自動スケール、ディスペンサーを使って商業生産にスケール アップする素晴らしい可能性があります。これが大幅に定式化し、精度を上げること、ヒューマン エラーを軽減し、ながら選考プロセス、高速。したがって、SAP AA の組み合わせから成る私たちの薬の定式化法溶解性と疎水性化合物の配達のための一般化されたプラットフォームは、大幅高スループット技術の恩恵を受けるでしょう。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者が明らかに何もありません。

Acknowledgments

この仕事は、健康の研究のカナダの協会によってサポートされて、モップ 42546 とモップ 119514 を与えます営業します。

Materials

Name Company Catalog Number Comments
EAK16-I CanPeptide Inc. Custom peptide Sequence: AEAKAEAKAEAKAEAK, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
EAK16-II CanPeptide Inc. Custom peptide Sequence: AEAEAKAKAEAEAKAK, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
EAK16-IV CanPeptide Inc. Custom peptide Sequence: AEAEAEAEAKAKAKAK, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
EFK8-II CanPeptide Inc. Custom peptide Sequence: FEFEFKFK, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
A6KE CanPeptide Inc. Custom peptide Sequence: AAAAAAKE, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
P6KE CanPeptide Inc. Custom peptide Sequence: PPPPPPPKE, N-terminus acetylation and C-terminus amidation, >95% pure by HPLC
Alanine Sigma-Aldrich A7469-100G L-Alanine
Isoleucine Sigma-Aldrich I7403-100G L-Isoleucine
Leucine Sigma-Aldrich L8912-100G L-Leucine
Methionine Sigma-Aldrich M5308-100G L-Methionine
Proline Sigma-Aldrich P5607-100G L-Proline
Valine Sigma-Aldrich V0513-100G L-Valine
Phenylalanine Sigma-Aldrich P5482-100G L-Phenylalanine
Tryptophan Sigma-Aldrich T8941-100G L-Tryptophan
Tyrosine Sigma-Aldrich T8566-100G L-Tyrosine
Glycine Sigma-Aldrich G8790-100G L-Glycine
Asparagine Sigma-Aldrich A4159-100G L-Asparagine
Glutamine Sigma-Aldrich G8540-100G L-Glutamine
Serine Sigma-Aldrich A7219-100G L-Serine
Threonine Sigma-Aldrich T8441-100G L-Threonine
Histidine Sigma-Aldrich H6034-100G L-Histidine
Lysine Sigma-Aldrich L5501-100G L-Lysine
Arginine Sigma-Aldrich A8094-100G L-Arginine
Aspartic Acid Sigma-Aldrich A7219-100G L-Aspartic Acid
Glutamic Acid Sigma-Aldrich G8415-100G L-Glutamic Acid
Cysteine Sigma-Aldrich C7352-100G L-Cysteine
Dimethyl Sulfoxide Sigma-Aldrich D4540-500ML DMSO
Ethanol Sigma-Aldrich 277649-100ML Anhydrous
Curcumin Sigma-Aldrich 08511-10MG Hydrophobic drug, curcumin
Rottlerin EMD Millipore 557370-10MG Hydrophobic drug, rottlerin
PP2 Enzo  BML-EI297-0001 Hydrophobic drug, PP2
Scintillation Vials VWR 2650-66022-081 Borosilicate Glass, with Screw Cap, 20 mL. Vials for weighing peptide.
Falcon 50 mL Conical Centrifugation Tubes VWR 352070 Polypropylene, Sterile, 50 mL. For amino acid solutions.

DOWNLOAD MATERIALS LIST

References

  1. Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., Zhang, S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. U. S. A. 97 (12), 6728-6733 (2000).
  2. Davis, M. E., Motion, J. P. M., et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 111 (4), 442-450 (2005).
  3. Matson, J. B., Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 48 (1), 26-33 (2012).
  4. Tatman, P. D., Muhonen, E. G., Wickers, S. T., Gee, A. O., Kim, E., Kim, D. Self-assembling peptides for stem cell and tissue engineering. Biomater. Sci. 4 (4), 543-554 (2016).
  5. Keyes-Baig, C., Duhamel, J., Fung, S. -Y., Bezaire, J., Chen, P. Self-assembling peptide as a potential carrier of hydrophobic compounds. J. Am. Chem. Soc. 126 (24), 7522-7532 (2004).
  6. Kumar, P., Pillay, V., Modi, G., Choonara, Y. E., du Toit, L. C., Naidoo, D. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat. Drug Deliv. Formul. 5 (1), 24-51 (2011).
  7. Wang, H., Yang, Z. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale. 4, 5259-5267 (2012).
  8. French, K. M., Somasuntharam, I., Davis, M. E. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv. Drug Deliv. Rev. 96, 40-53 (2016).
  9. Zhang, S., Holmes, T., Lockshin, C., Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. U. S. A. 90 (8), 3334-3338 (1993).
  10. Bowerman, C. J., Nilsson, B. L. Self-assembly of amphipathic β-sheet peptides: insights and applications. Biopolymers. 98 (3), 169-184 (2012).
  11. Amidon, G., Lennernäs, H., Shah, V., Crison, J. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12 (3), 413-420 (1995).
  12. Shi, Y., Porter, W., Merdan, T., Li, L. C. Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin. Drug Deliv. 6 (12), 1261-1282 (2009).
  13. Bawa, R., Fung, S. -Y., et al. Self-assembling peptide-based nanoparticles enhance cellular delivery of the hydrophobic anticancer drug ellipticine through caveolae-dependent endocytosis. Nanomedicine. 8 (5), 647-654 (2012).
  14. Liu, J., Zhang, L., Yang, Z., Zhao, X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int. J. Nanomed. 6, 2143-2153 (2011).
  15. Wu, Y., Sadatmousavi, P., Wang, R., Lu, S., Yuan, Y., Chen, P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int. J. Nanomed. 7, 3221-3233 (2012).
  16. Fung, S. Y., Yang, H., et al. Self-Assembling Peptide as a Potential Carrier for Hydrophobic Anticancer Drug Ellipticine: Complexation, Release and In Vitro Delivery. Adv. Funct. Mater. 19 (1), 74-83 (2009).
  17. Fung, S. -Y., Oyaizu, T., et al. The potential of nanoscale combinations of self-assembling peptides and amino acids of the Src tyrosine kinase inhibitor in acute lung injury therapy. Biomaterials. 32 (16), 4000-4008 (2011).
  18. Pacheco, S., Kanou, T., et al. Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. J. Control. Release. 239, 211-222 (2016).

Tags

医学、問題 127、生体材料、薬剤の静脈内投与、疎水性治療、薬物デリバリー車両、高スループット スクリーニング、自己組織化ペプチド、アミノ酸
自己組織化ペプチドとアミノ酸の組み合わせを用いる水溶液中の疎水性化合物の溶解度
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Pacheco, S., Fung, S. Y., Liu, M.More

Pacheco, S., Fung, S. Y., Liu, M. Solubility of Hydrophobic Compounds in Aqueous Solution Using Combinations of Self-assembling Peptide and Amino Acid. J. Vis. Exp. (127), e56158, doi:10.3791/56158 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter