フェムト秒時間分解型ラマン分析計に対する信号生成と最適化、測定、データ収集、データ処理の詳細について説明します。トルエン中のβ-カロテンの励起状態ダイナミクスに関する近赤外線刺激ラマン研究が代表的な用途として示されている。
フェムト秒時間分解刺激ラマン分光法は、近赤外線(近赤外線)遷移を伴う短命過渡現象の構造ダイナミクスを観察する有望な方法であり、近赤外線領域におけるラマン自然分光計の感度が低い場合に克服できる。ここでは、最近開発したラマン分析計を刺激したフェムト秒時間分解近倍法の技術的詳細について説明する。信号の生成と最適化、測定、データ取得、および記録されたデータの校正と補正の説明も提供されます。我々は、トルエン溶液中のβ-カロテンの励起状態ダイナミクスを分析するための分光計の応用を提示する。第2低励起シングル(S2)状態のβ-カロテンのC=Cストレッチバンドと最も低い励起シングル(S1)状態は、記録された時間分解刺激ラマンスペクトルにおいて明らかに観察される。フェムト秒の時間分解近IR刺激ラマン分光計は、単純な分子から複雑な材料までのπ共役系の構造ダイナミクスに適用可能である。
ラマン分光法は、単純なガス、液体、固体から機能性材料や生物学的システムまで、多種多様なサンプル中の分子の構造を調査するための強力で汎用性の高いツールです。励起光の光子エネルギーが分子の電子遷移エネルギーと一致すると、ラマン散乱が顕著に増強される。共鳴ラマン効果により、多くの分子で構成されるサンプルで、種のラマンスペクトルを選択的に観察することができます。近IR電子遷移は、大きなπ共役構造を有する分子の励起状態ダイナミクスを調査するためのプローブとして注目を集めています。最も低い励起一重項状態のエネルギーおよび寿命は、長い一次元ポリエン鎖1、2、3を有するいくつかのカロテノイドについて決定された。中性および荷電性励起のダイナミクスは、フィルム4、5、6、7、ナノ粒子8、および溶液9、10、11における様々な光導電性ポリマーについて広範囲に調査されている。時間分解近IRラマン分光法がこれらのシステムに適用されれば、過渡現象の構造に関する詳細な情報が得られる。しかし、IRラマンに近い分光器の感度が極めて低いため、IRラマンに近いラマン分光法12、13、14、15、16に関する研究が報告されているのはごくわずかです。感度が低いのは、主に近IRラマン散乱の低確率に由来します。ラマン散乱の確率はωiωs3に比例し、ωiとωsはそれぞれ励起光とラマン散乱光の周波数です。さらに、市販の近IR検出器は、UVおよび可視領域で機能するCCD検出器よりもはるかに低い感度を有する。
フェムト秒時間分解刺激ラマン分光法は、レーザーパルス17、18、19、20、21、22、23、24、25、26、27、28の明らかなフーリエ変換限界を超えてラマン活性振動バンドの時間依存的変化を観察する新しい方法として登場しました 、29,30,31,32,33.刺激されたラマン散乱は2つのレーザーパルスの照射によって発生する:ラマンポンプおよびプローブパルス。ここでは、ラマンポンプパルスがプローブパルスよりも大きな周波数を有すると仮定する。ラマンポンプとプローブパルスの周波数の違いがラマン活性分子振動の周波数と一致すると、照射された体積の多数の分子に対して振動が一貫して励起されます。コヒーレントな分子振動によって誘起される非線形偏光は、プローブパルスの電界を増強する。刺激されたラマン散乱は時間解決された近IR自然ラマン分光器の感受性の問題を解決することができるので、この技術は、近IRラマン分光法のために特に強力である。刺激されたラマン散乱は、プローブパルスの強度変化として検出される。近IR検出器が低感度であっても、プローブ強度が十分に高くなると刺激されたラマン散乱が検出されます。刺激されたラマン散乱の確率は、ωRPω Ω Ω ΩSRSに比例し、ωRPと ωSRSはラマンポンプパルスと刺激ラマン散乱の周波数をそれぞれ20にする。刺激されたラマン散乱の周波数、ωRPおよびωSRSは、それぞれ自発的ラマン散乱のωiおよびωsと同等である。我々は最近、π共役系2、3、7、10で光生成された短時間の遷移の構造およびダイナミクスを調査するために刺激されたラマン散乱を用いて、フェムト秒の時間分解近IRラマン分光計を開発した。この記事では、フェムト秒の時間分解近 IR マルチプレックス刺激ラマン分光計の技術的詳細を紹介します。光学的アライメント、時間分解刺激ラマンスペクトルの取得、および記録されたスペクトルのキャリブレーションおよび補正が記載されている。トルエン溶液中のβ-カロテンの励起状態ダイナミクスを、分光計の代表的な用途として研究する。
フェムト秒時間分解ニアIR多重刺激の重要な因子ラマン測定
高い信号対ノイズ比で時間分解された近IR刺激ラマンスペクトルを得るためには、プローブスペクトルは理想的には全波長範囲で均一な強度を有するべきである。したがって、白色光連続体(セクション2.5)は、時間分解近IR刺激ラマン実験の最も重要な部分の1つである。一般に、プローブスペクトルは、入射ビームの?…
The authors have nothing to disclose.
この研究は、JSPS KAKENHI助成金番号JP24750023、JP24350012、文部科学花角ひ交助成金番号JP26104534、JP16H00850、JP26102541、JP16H00782、および文部科学大学の戦略研究財団のためのプログラム、2019年11月201日
1-Axis Translational Stage | OptSigma | TSD-401S | Products equivalent to this are used as well; for M22, L9, and CM in Figure 1A |
20-cm Optical Delay Line | OptSigma | SGSP26-200 | ODL1 in Figure 1A |
3-Axis Translational Stage | OptSigma | TSD-405SL | For L8 in Figure 1A |
3-Axis Translational Stage | Suruga Seiki | B72-40C | For FC in Figure 1A |
5-cm Optical Delay Line | PMT | HRS-0050 | ODL2 in Figure 1A |
Al Concave Mirror | Thorlabs | CM254-050-G01 | Focal length: 50 mm; CM in Figure 1A |
Base Plate | Suruga Seiki | A21-6 | Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A |
BBO Crystal | EKSMA Optics | – | Type 1, θ = 23.2 deg; BBO in Figure 1A |
BK7 Plano-Concave Lens | OptSigma | SLB-25.4-50NIR2 | Focal length: 50 mm; IR anti-reflection coating; L6 in Figure 1A |
BK7 Plano-Convex Lens | OptSigma | SLB-25.4-150PIR2 | Focal length: 150 mm; IR anti-reflection coating; L2, L3, L5 in Figure 1A |
BK7 Plano-Convex Lens | OptSigma | SLB-25.4-100PIR2 | Focal length: 100 mm; IR anti-reflection coating; L4 in Figure 1A |
BK7 Plano-Convex Lens | OptSigma | SLB-25.4-200PIR2 | Focal length: 200 mm; IR anti-reflection coating; L7 in Figure 1A |
Broadband Dielectric Mirror | OptSigma | TFMS-25.4C05-2/7 | M22-M25, M28, M29 in Figure 1A |
Broadband Dielectric Mirror | Precision Photonics (Advanced Thin Films) | – | M26, M27, M30-M32 in Figure 1A |
Broadband Half-Wave Plate | CryLight | – | HWP3 in Figure 1A |
Color Glass Filter | HOYA | IR85 | F1 in Figure 1A |
Color Glass Filter | HOYA | RM100 | F2 in Figure 1A |
Color Glass Filter | Schott | BG39 | F3 in Figure 1A |
Computer | Dell | Vostro 200 Mini Tower | OS: Windows XP |
Cyclohexane | Kanto Kagaku | 07547-1B | HPLC grade |
Data Analysis Software | Wavemetrics | Igor Pro 8 | |
Dielectric Beamsplitter | LAYERTEC | – | Reflection : Transmission = 2 : 1; BS1 in Figure 1A |
Dielectric Beamsplitter | LAYERTEC | – | Reflection : Transmission = 1 : 1; BS2, BS3 in Figure 1A |
Dielectric Mirror | Precision Photonics (Advanced Thin Films) |
– | M1-M8 in Figure 1A |
Digital Oscilloscope | Tektronix | TDS3054B | 500 MHz, 5 GS/s |
Elastomer Tube | – | – | Figure 1E |
Femtosecond Ti:sapphire Oscillator | Coherent | Vitesse 800-2 | Wavelength: 800 nm, pulse duration: 100 fs, average power: 280 mW, repetition rate: 80 MHz; included in Ti:S in Figure 1A |
Femtosecond Ti:sapphire Regenerative Amplifier | Coherent | Legend-Elite-F-HE | Wavelength: 800 nm, pulse duration: 100 fs, pulse energy: 3.5 mJ, repetition rate: 1 kHz; included in Ti:S in Figure 1A |
Film Polarizer | OptSigma | SPFN-30C-26 | P1 in Figure 1A |
Glan-Taylor Prism | OptSigma | GYPB-10-10SN-3/7 | P2 in Figure 1A |
Gold Mirror | OptSigma | TFG-25C05-10 | M9-M21 in Figure 1A |
Half-Wave Plate | OptSigma | WPQ-7800-2M | HWP1 in Figure 1A |
Harmonic Separator | Coherent | TOPAS-C HRs 410-540 nm | HS in Figure 1A |
InGaAs Array Detector | Horiba | Symphony-IGA-512X1-50-1700-1LS | 512 ch, Liquid nitrogen cooled |
InGaAs PIN Photodiode | Hamamatsu Photonics | G10899-01K | |
IR Half-Wave Plate | OptiSource | – | HWP2 in Figure 1A |
Iris | Suruga Seiki | F74-3N | Products equivalent to this are used as well; I1-I17 in Figure 1A |
Lens Holder | OptSigma | LHF-25.4S | Products equivalent to this are used as well; for L1-L10 in Figure 1A |
Magnetic Gear Pump | Micropump | 184-415 | |
Mirror Mount | Siskiyou | IM100.C2M6R | Products equivalent to this are used as well; for M1-M32, BS1-BS3, BBO, CM in Figure 1A |
near-IR phosphor card | Thorlabs | VRC2 | |
Nut | – | – | Figure 1E, M4; purchased from a DIY store |
Optical Chopper | New Focus | 3501 | OC in Figure 1A |
Optical Parametric Amplifier | Coherent | OPerA-F | OPA1 in Figure 1A |
Optical Parametric Amplifier | Coherent | TOPAS-C | OPA2 in Figure 1A |
Polarizer Holder | OptSigma | PH-30-ARS | Products equivalent to this are used as well; for P1-P2 and HWP1-3 In Figure 1A |
Polyfluoroacetate Tube | – | – | Figure 1E |
Post Holder | OptSigma | BRS-12-80 | Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A |
Quartz Flow Cell | Tosoh Quartz | T-70-UV-2 | FC in Figure 1A |
Quartz Plano-Concave Lens | OptSigma | SLSQ-25-50N | Focal length: 50 mm; L8 in Figure 1A |
Quartz Plano-Convex Lens | OptSigma | SLSQ-25-100P | Focal length: 100 mm; L1, L9 in Figure 1A |
Quartz Plano-Convex Lens | OptSigma | SLSQ-25-220P | Focal length: 220 mm; L10 in Figure 1A |
Sapphire Plate | Pier Optics | – | 3 mm thick; SP in Figure 1A |
Si PIN Photodiode | Hamamatsu Photonics | S3883 | |
Single Spectrograph | Horiba Jobin Yvon | iHR320 | Focal length: 32 cm |
Stainless Steel Rod | Suruga Seiki | A41-100 | Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A |
Stainless Steel Rod | Newport | J-SP-2 | Figure 1E |
Toluene | Kanto Kagaku | 40180-1B | HPLC grade |
U-Shaped Steel Plate | – | – | Figure 1E; purchased from a DIY store |
Variable Neutral Density Filter (with a holder) | OptSigma | NDHN-100 | VND1 in Figure 1A |
Variable Neutral Density Filter (with a holder) | OptSigma | NDHN-U100 | VND2 in Figure 1A |
Visual Programming Language | National Instruments | LabVIEW 2009 | The control software in this study is programmed in LabVIEW 2009 |
Volume-Grating Bandpass Filter | OptiGrate | BPF-1190 | BPF in Figure 1A |
β-Carotene | Wako Pure Chemical Industries | 035-05531 |