Summary

植物-真菌相互作用におけるペクチンを検出する二重染色法

Published: February 04, 2022
doi:

Summary

このプロトコルは、コーヒー – 真菌相互作用におけるペクチンを検出するための顕微鏡的方法を記載する。

Abstract

植物細胞は、真菌感染から身を守るために、構成的または誘導性のいずれかの異なる構造機構を使用する。カプセル化は、植物細胞プロトプラストから真菌ハウストリアを単離するための効率的な誘導可能な機構である。逆に、細胞壁のポリマー成分の1つであるペクチンは、壊死的相互作用におけるいくつかのペプチド分解酵素の標的である。ここでは、光学顕微鏡によってペクチンおよび真菌菌糸を検出するためのプロトコルが提示される。錆病菌 ヘミレイア・バスタトリックス に感染したコーヒー葉の細胞へのペクチンリッチなカプセル化と 、セルコスポラ・コフェイコーラ によって誘導された葉肉細胞壁修飾が調査される。病変葉サンプルをカルノフスキー溶液で固定し、脱水し、グリコールメタクリレートに2〜4日間包埋した。すべてのステップに続いて、細胞間空間内の空気を除去し、包埋プロセスを改善するための真空ポンピングが続いた。埋め込まれたブロックを厚さ5〜7μmのセクションに切断し、これを水で覆われたスライドガラス上に堆積させ、続いて40°Cで30分間加熱した。次に、スライドをラクトフェノール中の5%コットンブルーで二重染色して真菌を検出し、水中の0.05%ルテニウムレッドでペクチン(ペクチンのポリウロン酸の酸性基)を検出した。 ヘミレイア・バスタトリックスの 真菌ハウストリアはペクチンによってカプセル化されていることが判明した。コーヒーセルコスポリオーシスでは、葉肉細胞が細胞壁の溶解を示し、細胞間菌糸および分生子色素が観察された。ここで提示される方法は、植物−真菌相互作用におけるペクチン関連応答を検出するのに有効である。

Introduction

植物の細胞壁防御機構は、真菌感染を抑制するために重要である。研究は、19世紀以来の細胞壁の厚さと組成の変化を報告している1,2。これらの変化は、真菌が細胞に入るのを妨げる乳頭の形成を刺激する真菌病原体によって誘発され得るか、または真菌ハウストリアから宿主細胞プロトプラストを単離するために菌糸を封入するために使用することができる。動的細胞壁障壁(すなわち、乳頭および完全に包まれたハウストリウム)の産生は、植物抵抗性を促進するために重要である3。真菌関連疾患に関する病理組織学的研究は、これらのメカニズムの発生を調査し、細胞壁ポリマー、セルロース、ヘミセルロース(アラビノキシラン)、およびカロースを真菌攻撃に対する耐性メカニズムとして記述している4567

細胞壁は微生物の攻撃に対する最初の障壁であり、植物 – 真菌相互作用を損なう。ペクティック多糖類は細胞壁を構成し、ホモガラクツロナンが最も豊富なポリマーである真二子植物の初代細胞における細胞壁組成の約30%(約60%)を占める8。ゴルジ体は、ガラクツロン酸鎖を構成する複雑なペクチン化合物を分泌し、メチル化されていてもいなくてもよい8,9。2012年以来、文献は、ペクチンメチルエステル化の程度が微生物ペクチン酵素10、1112による感染時の適合性を決定するのに重要であることを指摘している。したがって、植物 – 真菌病態系におけるペクチック化合物の存在および分布を検証するためにプロトコルが必要である。

乳頭またはハウストリアのカプセル化を検出するために様々な技術が用いられてきた。使用される参照方法は、固定組織の透過型電子顕微鏡(TEM)および生体および固定組織の光学顕微鏡法である。TEMに関しては、いくつかの研究が真菌耐性における細胞壁アポジションの構造的役割を実証している13,14,15,16、およびレクチンおよび抗体の使用が炭水化物ポリマーを見つけるための複雑な方法であること16しかし、研究は、光学顕微鏡法が重要なアプローチであり、組織化学的および免疫組織化学的ツールが乳頭およびハウスストリウム包帯の組成をよりよく理解することを可能にすることを示している6,7

病原性真菌は、生物栄養性および壊死性の2つの主要なタイプのライフスタイルを示す。生物栄養性真菌は、その栄養のために生細胞に依存しているのに対し、壊死性真菌は宿主細胞を殺し、次いで死んだ組織に生息する17。ラテンアメリカでは、真菌Hemileia vastatrixによって引き起こされるコーヒー葉の錆は、コーヒー作物における重要な病気である18,19ヘミレイア・バスタトリックスは、生物栄養挙動を示し、耐性コーヒー種または栽培品種で観察される構造変化のうち、過敏応答、細胞壁へのカロース、セルロース、およびリグニンの沈着、ならびに細胞肥大14が報告されている。著者の知る限り、文献はコーヒーの錆び抵抗性におけるペクチンの重要性に関する情報を報告していない。一方、セルコスポリオーシスを引き起こす壊死性真菌は、ペクチナーゼおよびポリガラクツロナーゼ20などの細胞壁分解に関連する一連の酵素を介してペクチンを標的とする。コーヒー中のセルコスポリア症は、真菌Cercospora coffeicolaによって引き起こされる、コーヒー作物2122に対する主要な脅威でもある。この真菌は、葉と果実の両方に壊死性病変を引き起こす。浸透後、C.コフェイコーラは、細胞内および細胞間経路23、2425を介して植物組織にコロニー形成する。

本プロトコールは、細胞壁上の真菌構造およびペクチンの存在を調査する。このプロトコールは、真菌との生物栄養相互作用において宿主によって誘導されるペクチン(ペクチンのポリウロン酸の酸性基に特異的であるルテニウム赤色色素で染色される)に関連する植物応答を同定するのに有用である。また、壊死性真菌がペクチック細胞壁の分解に及ぼす影響を検証するのにも役立ちます。本結果は、二重染色法が真菌の構造や生殖期の判別に有効であることを示している。

Protocol

緩衝溶液及び試薬の調製 100 mLの蒸留水に4.28 gのカコジル酸ナトリウムを加えて2 Mカコジル酸緩衝液を調製し、0.2 N HClでpHを7.25に調整します。 10mLの25%グルタルアルデヒド水溶液、10mLの10%ホルムアルデヒド水溶液、25mLの2Mカコジル酸緩衝液、および0.5mLの0.5M CaCl226を混合して、100mLのカルノフスキー固定液を調製する。蒸留水で100mLまでの容…

Representative Results

GMA包埋部のコットンブルーラクトフェノール染色は、生物栄養性および壊死性真菌相互作用の両方において、コーヒー葉肉細胞間および内部にいくつかの真菌構造の存在を明らかにした。 生物栄養病原系において、二重染色法を用いて染色すると、細胞壁および緻密なプロトプラスト含量を含む ヘミレイア・バスタトリクス 菌糸は、海綿状および柵状実質の両方…

Discussion

本研究は、ハウストリアを生物栄養病態系に封入する細胞壁のペクチン組成を調べるための代替二重染色組織化学的試験を導入する。その目的はまた、壊死性真菌およびそれによって誘導される細胞壁変化を検出する方法の有効性を実証することである。ここで、コーヒー実質細胞壁のペクチンは、錆病菌ヘミレイア・バスタトリクスの首とハウスリウムの両方をカプセル化すること?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは、この研究を発展させるための支援について、ハドソン・W・P・デ・カルヴァーリョ博士に感謝したい。著者らはまた、電子顕微鏡研究所「北島エリオット渡辺教授」が光顕微鏡施設を提供してくれたことにも感謝している。著者らは、植物材料に病変を供給したFlávia Rodrigues Alves Patrício博士に感謝する。

Materials

Blades DB80 HS Leica 14035838383 Sectioning
Cacodylate buffer EMS # 11652 Fixation
Cotton Blue Lactophenol Metaquímica 70SOLSIG024629 Staining
Formaldehyde EMS #15712 Fixation
Glutaraldehyde EMS #16216 Fixation
Historesin Kit Technovit /EMS #14653 Historesin for embedding
Hot plate Dubesser SSCD25X30-110V Staining
Microscopy Zeiss #490040-0030-000 Image capture
Microtome (Leica RM 2540) Leica 149BIO000C1 14050238005 Sectioning
Plastic molding cup tray EMS 10176-30 Staining
Ruthenium red LABHouse #006004 Staining
Software Axion Vision Zeiss #410130-0909-000 Image capture
Vaccum pump Prismatec 131 TIPO 2 V.C. Fixation

References

  1. deBary, A. Research on the development of some parasitic fungi. Annals of Natural Sciences. Botany and Plant Biology. 20, 5 (1863).
  2. Mangin, L. Research on the Peronospores. Bulletin of the Natural History Society of Autun. 8, 55-108 (1895).
  3. Underwood, W. The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science. 3 (85), 1-6 (2012).
  4. Hückelhoven, R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology. 45, 101-127 (2007).
  5. Voigt, C. A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science. 5 (168), 1-6 (2014).
  6. Chowdhury, J., et al. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. Hordei. New Phytologist. 204 (3), 650-660 (2014).
  7. Marques, J. P. R., et al. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Frontiers in Plant Science. 9 (698), 1-14 (2018).
  8. Caffall, K. H., Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research. 344, 1879-1900 (2009).
  9. Carpita, N. C., Ralph, J., McCann, M. C. The cell wall. Biochemistry and Molecular Biology of Plants., 2nd Edition. , 45 (2015).
  10. Lionetti, V., Cervone, F., Bellincampi, D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. Journal of Plant Physiology. 169 (16), 1623-1630 (2012).
  11. Lionetti, V. Pectoplate: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science. 6 (331), 1-8 (2015).
  12. Lionetti, V., et al. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiology. 173 (3), 1844-1863 (2017).
  13. Heath, M. C. Haustorium sheath formation in cowpea leaves immune to rust infection. Phytopathology. 61, 383-388 (1971).
  14. Silva, M. C., et al. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology. 18 (1), 119-147 (2006).
  15. An, P., Li, X., Zheng, Y., Eneji, A. E., Inanaga, S. Calcium effects on root cell wall composition and ion contents in two soybean cultivars under salinity stress. Canadian Journal of Plant Science. 94 (4), 733-740 (2014).
  16. Marques, J. P. R., et al. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals of Botany. 119 (5), 815-827 (2017).
  17. Delaye, L., García-Guzmán, G., Heil, M. Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits. Fungal Diversity. 60 (1), 125-135 (2013).
  18. Avelino, J., et al. The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security. 7, 303-321 (2015).
  19. Zambolim, L. Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology. 41, 1-8 (2016).
  20. Swiderska-Burek, U., et al. Phytopathogenic Cercosporoidfungi-from taxonomy to modern biochemistry and molecular biology. International Journal of Molecular Sciences. 21 (22), 8555 (2020).
  21. Andrade, C. C. L., et al. Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica. 49 (7), 727-737 (2021).
  22. Zambolim, L. Coffee tree diseases. Handbook of Phytopathology: Diseases of cultivated plants. 5th ed. , 810 (2016).
  23. Castaño, A. J. J. Coffee rust. Informative report Cenicafé. 82, 313-327 (1956).
  24. Echandi, E. Coffee rust, caused by the fungus Cercospora coffeicola. Turrialba. 9 (2), 54-67 (1959).
  25. Souza, A. G. C., Rodrigues, F. A., Maffia, L. A., Mizubuti, E. S. G. Infection process of Cercospora coffeicola on coffee leaf. Journal of Phytopathology. 159 (1), 6-11 (2011).
  26. Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology. 27, 137-138 (1965).
  27. Hoagland, D. R., Arnon, D. I. The water-culture method for growing plants without soil. College of Agriculture, Agricultural Experiment Station. , 347 (1950).
  28. Eskes, A. B. Resistance. Coffee rust: epidemiology, resistance and management. 1, 171 (1989).
  29. Silva, M. C., Nicole, M., Rijo, L., Geiger, J. P., Rodrigues, C. G. Cytochemical aspects of the plant-rust fungus interface during the compatible interaction Coffea arabica (cv. Caturra)-Hemileia vastatrix (race III). International Journal of Plant Sciences. 160 (1), 79-91 (1999).
  30. Alves, R. F., Marques, J. P. R., Apezzato-da-Glória, B., Spósito, M. B. Process of infection and colonization of Pseudocercospora kaki in persimmon leaves. Journal of Phytopathology. 169 (3), 168-175 (2020).
  31. Hayat, M. A. . Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 1. , 564 (1981).
  32. Paiva, E. A. S., Pinho, S. Z., Oliveira, D. M. T., Chiarini-Garcia, H., Melo, R. C. N. Large plant samples: how to process for GMA embedding. Light microscopy: methods and protocols. 689, 37-49 (2011).
  33. Marques, J. P. R., Soares, M. K. M., Appezzato-da-Glória, B. New staining technique for fungal-infected plant tissues. Turkish Journal of Botany. 37 (4), 784-787 (2013).
  34. Schuller, A., Ludwig-Müller, J. Histological methods to detect the clubroot pathogen Plasmodiophora brassicae during its complex life cycle. Plant Pathology. 65 (8), 1223-1237 (2016).
  35. Braga, Z. V., Santos, R. F., Amorim, L., Appezzato-da-Glória, B. Histopathological evidence of concomitant sexual and asexual reproduction of Elsinoë ampelina in grapevine under subtropical climate. Physiological and Molecular Plant Pathology. 111, 101517 (2020).
  36. Marques, J. P. R., Soares, M. K. M., Piracicaba, F. E. A. L. Q. . Manual of Techniques Applied to Plant Histopathology. , 140 (2021).
  37. Navarro, B. L., Marques, J. P. R., Appezzato-da-Glória, B., Spósito, M. B. Histopathology of Phakopsora euvitis on Vitis vinifera. European Journal of Plant Pathology. 154, 1185-1193 (2019).
  38. Chesters, C. G. C. Three methods of using cotton blue as a mycological stain. Annals of Botany. 48 (3), 820-822 (1934).
  39. Macedo, N. A. Manual of Techniques in Plant Histology. Feira de Santana: State University of Feira de Santana. , 68 (1997).
  40. Lecker, A. Preparation of lactophenol cotton blue slide mounts. Community Eye Health Journal. 12 (30), 24 (1999).
  41. Whitakaer, F. C. S., Denison, F. C. S. Lactic acid in wool dyeing. Journal of the Society of Dyers and Colourists. 98, 103 (1895).
  42. Chamberlain, C. J. . Methods in Plant Histology. , 349 (1932).
  43. Sterling, C. Crystal-structure of ruthenium red and stereochemistry of its pectin stain. American Journal of Botany. 57, 172-175 (1970).
  44. Luft, J. H. Ruthenium red and violet. 1. Chemistry, purification, methods of use for electron microscopy and mechanism of action. The Anatomical Record. 171 (3), 347-368 (1971).
  45. Buckeridge, M. S., Cavalari, A. A., Silva, G. B. D. A., Kerbauy, G. B. Cell Wall. Plant Physiology. , 165-181 (2013).
check_url/63432?article_type=t

Play Video

Cite This Article
Marques, J. P. R., Nuevo, L. G. Double-Staining Method to Detect Pectin in Plant-Fungus Interaction. J. Vis. Exp. (180), e63432, doi:10.3791/63432 (2022).

View Video