Summary

构建局部场势微电极,用于同时从多个脑结构 进行体内 记录

Published: March 14, 2022
doi:

Summary

本方案描述了定制微电极阵列的构建,以同时记录来自多个大脑结构 的体内 局部场电位。

Abstract

研究人员通常需要同时记录来自几种大脑结构的局部场电位(LFP)。从多个所需的大脑区域进行记录需要不同的微电极设计,但市售的微电极阵列通常不提供这种灵活性。在这里,本协议概述了定制微电极阵列的简单设计,以在不同深度同时记录来自多个大脑结构的LFP。这项工作描述了双侧皮质,纹状体,腹外侧丘脑和黑质微电极的构造作为示例。概述的设计原理提供了灵活性,微电极可以通过计算立体定位坐标并相应地快速更改结构以针对自由移动或麻醉小鼠中的不同大脑区域进行修改和定制,以记录任何结构中的LFP。微电极组件需要标准工具和耗材。这些定制的微电极阵列使研究人员能够轻松设计任何配置的微电极阵列来跟踪神经元活动,从而提供毫秒级分辨率的LFP记录。

Introduction

局部场电位(LFP)是从大脑细胞外空间记录的电势。它们由神经元外部的离子浓度失衡产生,代表一小群局部神经元的活动,与宏观尺度的脑电图记录相比,可以精确地监测特定大脑区域的活动1。据估计,相隔1毫米的LFP微电极对应于两个完全不同的神经元群体。脑电图信号由脑组织、脑脊液、颅骨、肌肉和皮肤过滤,而LFP信号是局部神经元活动的可靠标志物1

研究人员通常需要同时记录来自几种大脑结构的LFP,但市售的微电极阵列通常不提供这种灵活性。在这里,本方案描述了完全可定制,易于构建的微电极,以同时记录来自不同深度的任何所需大脑区域的LFP。虽然LFPs已被广泛用于记录特定大脑区域23456789的神经元活动,但当前易于定制的设计允许记录来自任何多个浅表或深部大脑区域的LFP1112.还可以修改该协议,通过确定大脑区域的立体定位坐标并相应地组装阵列来构建任何所需的微电极阵列。这些微电极具有10 kHz采样率和60-70 kΩ电阻(2 cm长度),使我们能够以毫秒级精度记录LFP。然后,数据可以通过16通道放大器放大,滤波(低通1 Hz,高通5 kHz)并数字化。

Protocol

本工作已获得弗吉尼亚大学动物护理和使用委员会的批准。C57Bl / 6两性小鼠(7-12周)用于实验。这些动物保持在12小时光照/ 12小时黑暗循环中,并 可以随意 获得食物和水。 1. 微电极结构 要构建微电极,请使用50μm(直径)的透镜涂层镍铬丝(见 材料表)。在平台背面用胶带将电线的一端缠绕在平台上最近的旋钮上三次(<strong class="xf…

Representative Results

在这项工作中,LFP微电极用于绘制通过基底神经节11扩散的癫痫发作。从右侧运动前皮层(癫痫发作焦点所在)和左侧VL,纹状体和SNR同时进行LFP记录(图4)。癫痫发作开始被确定为电压迹线的偏转至少是基线的两倍(图4A,红色箭头)。功率谱图11显示了记录的LFP的频率分布(图4A)。可以以?…

Discussion

从历史上看,微电极阵列已被广泛用于记录来自感兴趣的特定大脑区域2345678913的神经元活动。但是,我们简单的微电极设计允许同时从多个结构记录<s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院(RO1 NS120945,R37NS119012至JK)和UVA脑研究所的支持。

Materials

Amplifier 16-Channel A-M Systems Model 3600 Amplifier
Cranioplasty cement Coltene Perm Reeline/Repair Resin Type II Class I Shade – Clear Cement to hold microelectrodes
Cryostat Microtome Precisionary CF-6100 To slice brain
Diamel-coatednickel-chromium wire Johnson Matthey Inc. 50 µm Microelectrode wire
Dremel Dremel 300 Series To drill holes in mouse skull
Epoxy CEC Corp C-POXY 5 Fast setting adhesive
Hemostat Any To hold the headset
Forceps Any To hold microelectrodes
Light microscope Nikon SMZ-10 To see alignment
Ohmmeter Any To measurre resistance
Pins (Headers and matching Sockets) Mill-Max Interconnects, 833 series, 2 mm grid gull wing surface mount headers and sockets To attach microelectrodes to
Polymicro Tubing Kit Neuralynx ID 100 ± 04 µm, OD 164 ± 06 µm, coating thickness 12 µm Glass tubes
Pulse Stimulator A-M Systems Model 2100 To mark the microelectrode location at the end of the recordings
Scissors Any To cut microelectrodes
Superglue Gorilla Adhesive
Thick wire 0.008 in. – 0.011 in. A-M Systems 791900 Tick wire to hold the microelectrode array
Thin wire 0.005 in. – 0.008 in. A-M Systems 791400 Thin wire for reference and ground

References

  1. Buzsáki, G., Anastassiou, C. A., Koch, C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience. 13, 407-420 (2012).
  2. Hubel, D. H., Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology. 148 (3), 574-591 (1959).
  3. O’Keefe, J. Place units in the hippocampus of the freely moving rat. Experimental Neurology. 51 (1), 78-109 (1976).
  4. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., Moser, M. B. Spatial representation in the entorhinal cortex. Science. 305 (5688), 1258-1264 (2004).
  5. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neuroscience. 7, 446-451 (2004).
  6. Buckmaster, P. S., Edward Dudek, F. In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. Journal of Neurophysiology. 81 (2), 712-721 (1999).
  7. Driscoll, N., et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Communications Biology. 4, 1-14 (2021).
  8. Roy, D. S., et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature. 531, 508-512 (2016).
  9. Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., Moser, E. I. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature. 510, 143-147 (2014).
  10. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  11. Brodovskaya, A., Shiono, S., Kapur, J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain. 144 (7), 2074-2091 (2021).
  12. Ren, X., Brodovskaya, A., Hudson, J. L., Kapur, J. Connectivity and neuronal synchrony during seizures. The Journal of Neuroscience. 41 (36), 7623-7635 (2021).
  13. Chang, E. H., Frattini, S. A., Robbiati, S., Huerta, P. T. Construction of microdrive arrays for chronic neural recordings in awake behaving mice. Journal of Visualized Experiments. (77), e50470 (2013).
check_url/63633?article_type=t

Play Video

Cite This Article
Brodovskaya, A., Shiono, S., Batabyal, T., Williamson, J., Kapur, J. Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously. J. Vis. Exp. (181), e63633, doi:10.3791/63633 (2022).

View Video