Summary

分析黑 腹果蝇 幼虫脂肪体中饥饿诱导的自噬

Published: August 04, 2022
doi:

Summary

本协议描述了通过营养消耗黑腹果蝇幼虫脂肪体中诱导自噬,并使用转基因苍蝇菌株分析自噬的变化。

Abstract

自噬是一种细胞自我消化过程。它将货物运送到溶酶体进行降解,以应对各种压力,包括饥饿。自噬功能障碍与衰老和多种人类疾病有关。自噬机制是高度保守的 – 从酵母到人类。 黑腹果蝇的幼虫脂肪体是脊椎动物肝脏和脂肪组织的类似物,为 监测体内自噬提供了独特的模型。幼虫脂肪体中的营养匮乏很容易诱导自噬。大多数自噬相关基因在 果蝇 中是保守的。已经开发出许多表达标记自噬标记的转基因苍蝇菌株,这有助于监测自噬过程中的不同步骤。克隆分析能够密切比较同一块组织中具有不同基因型的细胞中的自噬标志物。目前的协议详细说明了(1)在幼虫脂肪体中产生体细胞克隆,(2)通过氨基酸饥饿 诱导 自噬和(3)解剖幼虫脂肪体的程序,旨在创建一个模型,用于使用自噬体标记(GFP-Atg8a)和克隆分析分析分析自噬差异。

Introduction

自噬是由各种压力引起的“自食”过程,包括氨基酸饥饿1。巨自噬(以下简称自噬)是研究最充分的自噬类型,在维持细胞稳态方面起着不可替代的作用2。自噬功能障碍与几种人类疾病有关3.此外,一些自噬相关基因是治疗各种疾病的潜在靶点4

自噬以高度复杂的方式受到调节5。饥饿时,分离膜螯合细胞质物质以形成双膜自噬体6。然后自噬体与内体和溶酶体融合形成两亲体和自溶酶体。在溶酶体水解酶的帮助下,吞噬的细胞质内容物被降解,营养物质被回收7

自噬是一个进化上保守的过程8黑腹果蝇 是研究 体内自噬过程的一个很好的模型。氨基酸饥饿容易诱导苍蝇脂肪体组织中的自噬,这是人类肝脏和脂肪组织的类似物9。自噬缺陷会破坏几种自噬相关蛋白的独特点状模式,例如Atg8,Atg9,Atg18,Syx17,Rab7,LAMP1和p62等10。因此,分析这些自噬标志物的模式将有助于辨别自噬缺陷的发生和有缺陷的自噬步骤。例如,泛素样蛋白Atg8是最常用的自噬标志物11。在 黑腹果蝇中,已成功开发出具有绿色荧光蛋白(GFP)标记的Atg8a的转基因菌株12。GFP-Atg8a在喂养细胞的细胞质和细胞核中扩散。饥饿后,GFP-Atg8a被磷脂酰乙醇胺(PE)加工和修饰并形成点状体,其标记分离膜和完全发育的自噬体1314。通过直接荧光显微镜,可以很容易地观察到自噬诱导为GFP-Atg8点形成的增加15。在存在自噬起始缺陷的情况下,Atg8a 点状体不会响应饥饿而形成。由于GFP-Atg8a可以通过自溶酶体中的低pH值进行淬灭和消化,如果在晚期16期阻断自噬,GFP-Atg8a点的数量可能会增加。

由于自噬对营养可用性高度敏感17,培养条件的微小差异通常会导致表型的变化。因此,克隆分析是一种分析同一组织中突变细胞与野生型对照细胞的方法,在解剖自噬缺陷方面具有主要优势18。利用翻转酶/翻转酶识别靶标(FLP/FRT)介导的同源染色体之间的位点特异性重组,携带镶嵌组织的果蝇很容易制造1920。突变细胞周围的野生型细胞形成完美的内部对照,以避免个体差异21

本研究描述了如何通过氨基酸饥饿诱导自噬并产生表达GFP-Atg8a的镶嵌脂肪体组织。这些协议可用于分析突变克隆之间自噬的差异。

Protocol

1. 果蝇 杂交和产卵 将3只雄性(基因型 hsFLP ubiRFP FRT19A; cgGal4 UAS-GFP-Atg8a)和15只雌性(基因型 y’ w* Mu FRT19A / FM7,Kr GFP )成年苍蝇(见 材料表)引入培养瓶(在25°C下用标准玉米面/糖蜜/琼脂 果蝇 培养基)进行交配。注意:必须设置同一杂交的多个培养瓶,以确保有足够的幼虫进行进一步的实验。基因型 为hsFLP ubiRFP FRT19A的雄性苍?…

Representative Results

在喂养条件下,GFP标记的泛素样蛋白GFP-Atg8a在细胞内扩散。饥饿时,它会形成绿色点状体并标记自噬体。一旦自噬体与溶酶体融合,GFP在酸性自溶酶体中淬灭,绿色点消失。如果未诱导自噬或自噬体成熟加速,则预计GFP点的数量较低。然而,如果自噬体和溶酶体之间的融合被阻断或自溶酶体的pH值变得碱性,则预计GFP点的数量和/或大小会很高。 在这里介绍的方案中,FLP / FRT?…

Discussion

本协议描述了以下方法:(1)在幼虫脂肪体中产生携带突变克隆的苍蝇,(2)通过氨基酸饥饿诱导自噬,以及(3)解剖幼虫脂肪体。为了在幼虫脂肪体中成功生成克隆,需要认真执行以下关键步骤。(1)准确把握热休克的时间至关重要,因为有丝分裂重组仅在组织经历有丝分裂时发生,并且(2)热休克温度和持续时间对于诱导FLP表达至关重要。建议使用标准的37°C水浴进行1小时的热休克。考?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢THFC和BDSC提供苍蝇菌株。童超博士得到了国家自然科学基金(32030027,91754103,92157201)和中央大学基础研究基金的支持。我们感谢生命科学研究所(LSI)的核心设施提供服务。

Materials

1.5 mL microcentrifuge tube Axygen MCT-150-C
#5 Forceps Dumont RS-5015
9 Dressions Spot plate PYREX 7220-85
Fluorescence Microscope Nikon SMZ1500
Glycerol Sangon Biotech A100854-0100
KCl Sangon Biotech A610440-0500 Composition of 1x PBS solution
KH2PO4 Sangon Biotech A600445-0500 Composition of 1x PBS solution
Laboratory spatula Fisher 14-375-10
Long forceps R' DEER RST-14
Microscope cover glass CITOTEST 80340-1130
Microscope slides CITOTEST 80302-2104
Na2HPO4 Sangon Biotech A501727-0500 Composition of 1x PBS solution
NaCl Sangon Biotech A610476-0005 Composition of 1x PBS solution
Paraformaldehyde Sigma-Aldrich 158127
Petri dish Corning 430166
Standard cornmeal/molasses/agar fly food Tong Lab-made
Stereo microscope Nikon SMZ745
Sucrose Sinopharm Chemical Reagent Co.,Ltd. 10021418
Vectashield antifade mounting medium with DAPI Vectorlabratory H-1200-10 Recommended mounting medium
Fly stocks
y'w* Iso FRT19A Tong Lab's fly stocks
y'w* Mu1FRT19A/ FM7,Kr GFP Tong Lab's fly stocks
y'w* Mu2 FRT19A/ FM7,Kr GFP Tong Lab's fly stocks
hsFLP ubiRFP FRT19A; cgGal4 UAS-GFP-Atg8a Tong Lab's fly stocks

References

  1. Yorimitsu, T., Klionsky, D. J. Autophagy: Molecular machinery for self-eating. Cell Death & Differentiation. 12 (2), 1542-1552 (2005).
  2. Jin, S., White, E. Role of autophagy in cancer: Management of metabolic stress. Autophagy. 3 (1), 28-31 (2007).
  3. Mizushima, N., Levine, B. Autophagy in human diseases. New England Journal of Medicine. 383 (16), 1564-1576 (2020).
  4. Mizushima, N., et al. Autophagy fights disease through cellular self-digestion. Nature. 451 (7182), 1069-1075 (2008).
  5. Yang, Z., Klionsky, D. J. Eaten alive: A history of macroautophagy. Nature Cell Biology. 12 (9), 814-822 (2010).
  6. Lamb, C. A., Yoshimori, T., Tooze, S. A. The autophagosome: Origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology. 14 (12), 759-774 (2013).
  7. Klionsky, D. J., Eskelinen, E. L., Deretic, V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes…Wait,I’mconfused. Autophagy. 10 (4), 549-551 (2014).
  8. Zhang, S., Hama, Y., Mizushima, N. The evolution of autophagy proteins-Diversification in eukaryotes and potential ancestors in prokaryotes. Journal of Cell Science. 134 (13), (2021).
  9. Scott, R. C., Schuldiner, O., Neufeld, T. P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Developmental Cell. 7 (2), 167-178 (2004).
  10. Liu, W., et al. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy. 14 (8), 1293-1309 (2018).
  11. Ichimura, Y., et al. A ubiquitin-like system mediates protein lipidation. Nature. 408 (6811), 488-492 (2000).
  12. Rusten, T. E., et al. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Developmental Cell. 7 (2), 179-192 (2004).
  13. Nishida, Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 461 (7264), 654-658 (2009).
  14. Ravikumar, B., et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews. 90 (4), 1383-1435 (2010).
  15. Xie, Z., Nair, U., Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell. 19 (8), 3290-3298 (2008).
  16. Shintani, T., Klionsky, D. J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. Journal of Biological Chemistry. 279 (29), 29889-29894 (2004).
  17. Russell, R. C., Yuan, H. X., Guan, K. L. Autophagy regulation by nutrient signaling. Cell Research. 24 (1), 42-57 (2014).
  18. Nagy, P., et al. How and why to study autophagy in Drosophila: It’s more than just a garbage chute. Methods. 75, 151-161 (2015).
  19. Golic, K. G., Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 59 (3), 499-509 (1989).
  20. Senecoff, J. F., Cox, M. M. Directionality in FLP protein-promoted site-specific recombination is mediated by DNA-DNA pairing. Journal of Biological Chemistry. 261 (16), 7380-7386 (1986).
  21. Germani, F., Bergantinos, C., Johnston, L. A. Mosaic analysis in Drosophila. Genetics. 208 (2), 473-490 (2018).
  22. Zappia, M. P., et al. E2F/Dp inactivation in fat body cells triggers systemic metabolic changes. eLife. 10, 67753 (2021).
  23. Demerec, M. . Biology of Drosophila. , (1965).
  24. Rizki, R. M., et al. Drosophila larval fat body surfaces. Wilhelm Roux’s Archives of Developmental Biology. 192 (1), 1-7 (1983).
  25. Szeto, J., et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy. 2 (3), 189-199 (2006).
  26. Renna, M., et al. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. Journal of Biological Chemistry. 285 (15), 11061-11067 (2010).
  27. Guo, S., et al. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages. Scientific Reports. 8, 1-15 (2018).
  28. Tian, W., et al. An antibody for analysis of autophagy induction. Nature Methods. 17 (2), 232-239 (2020).
  29. Nezis, I. P. Selective autophagy in Drosophila. International Journal of Cell Biology. 2012, 146767 (2012).
  30. Chu, Y., et al. Fluorescent materials for monitoring mitochondrial biology. Materials. 14 (15), 4180 (2021).
check_url/64282?article_type=t

Play Video

Cite This Article
Shi, K., Tong, C. Analyzing Starvation-Induced Autophagy in the Drosophila melanogaster Larval Fat Body. J. Vis. Exp. (186), e64282, doi:10.3791/64282 (2022).

View Video