-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Genetics
Generation of Genome-wide Chromatin Conformation Capture Libraries from Tightly Staged Early ...
Generation of Genome-wide Chromatin Conformation Capture Libraries from Tightly Staged Early ...
JoVE Journal
Genetics
This content is Free Access.
JoVE Journal Genetics
Generation of Genome-wide Chromatin Conformation Capture Libraries from Tightly Staged Early Drosophila Embryos

Generation of Genome-wide Chromatin Conformation Capture Libraries from Tightly Staged Early Drosophila Embryos

Full Text
20,942 Views
10:35 min
October 3, 2018

DOI: 10.3791/57001-v

Clemens B. Hug1, Juan M. Vaquerizas1

1Max Planck Institute for Molecular Biomedicine

Summary

This work describes a protocol for the generation of high resolution in situ Hi-C libraries from tightly staged pre-gastrulation Drosophila melanogaster embryos.

Transcript

This method can help answer key questions in the chromatin architecture field such as how the 3D structure of chromatin can influence gene expression and development. The main advantage of this technique is that it provides a high resolution view of chromatin architecture and precisely staged fly embryos. Though this method can provide insight into chromatin organization and development, one can also use existing lines from transgenic fly libraries to test their effect in chromatin organization.

To begin the protocol, adjust the total volume of previously collected embryos to two milliliters with PBST. Add six milliliters of heptane and 100 microliters of 37%formaldehyde in water. After adding formaldehyde, vigorously shake the tube up and down for one minute.

The aqueous and organic phase will combine to form a shampoo-like consistency. Agitate the mixture on a rotary mixer for 10 minutes. Centrifuge the tube at 500 times g for one minute at room temperature to collect embryos at the bottom of the tube.

Aspirate the entire shampoo-like liquid and discard it, taking care not to aspirate any embryos. 15 minutes after the addition of formaldehyde, resuspend the embryos in five milliliters of PBST with 125 millimolar glycine. Shake the embryos up and down vigorously for one minute.

After centrifuging, aspirate the supernatant. Using a 1, 000 microliter pipette, transfer a batch of 100 embryos to a small glass vessel suitable for sorting, preferably on a dark background and place it on ice. Sort embryos by nuclear density and cell cycle status using a needle or syringe tip.

Remove all mitotic embryos recognizable by their dispersed, non-nuclear distribution of EGFP PCNA and embryos that partially show a non-nuclear GFP signal. To aid the sorting, line up reference embryos at nuclear cycles 12, 13, and 14 in each batch to match embryos with one of the reference embryos. Pipette up the desired embryos using a 1, 000 microliter pipette.

Transfer them to a fresh tube and place them on ice. Continue until enough embryos are sorted for the planned experiment. Spin tubes briefly at 100 times g at room temperature.

Remove the supernatant and ensure the embryos are as dry as possible for freezing. Flash freeze embryos by submerging the tubes in liquid nitrogen and store at minus 80 degrees Celsius. Place the tubes with frozen embryos on ice.

Resuspend the embryos in 500 microliters of ice cold lysis buffer. Wait one minute to allow the embryo to settle at the bottom of the tube. Next, grind the embryos with a metal micro pestle pre-cooled on ice that is designed to tightly fit a 1.5 milliliter microcentrifuge tube.

To avoid agitating the embryos, insert the pestle slowly until it touches the bottom of the tube. Push down and then grind by rotating the pestle twice in both directions. Lift the pestle very slightly.

Push to the bottom of the tube again and repeat the grinding procedure 10 times or until the embryos are completely lysed. The solution should be homogenous and no residual large pieces of embryos should remain. Incubate the homogenized suspension on ice for 15 minutes.

Spin at 1, 000 times g four degrees Celsius for five minutes. Discard the supernatant and wash the pellet by resuspending in 500 microliter ice cold lysis buffer and pipetting up and down. After another spin, discard the supernatant.

Resuspend the washed pellet in 100 microliters of 0.5%Sodium Dodecyl Sulfate or SDS. Then permeabilize the nuclei by incubating the sample for 10 minutes at 65 degrees Celsius in a heating block. Add 50 microliters of 10%Triton X100 and 120 microliters of water.

Flick the tube to mix the contents and incubate the tube at 37 degrees Celsius for 15 minutes in a heat block. Add 25 microliters of 10X restriction enzyme buffer and 20 units of five units per microliter MBO1. Flick the tube to mix the contents and incubate the tube in a heat block to digest the DNA.

Add another 20 units of MBO1. Continue the incubation for 90 minutes. After the second 90-minute incubation, incubate the sample at 62 degrees Celsius for 20 minutes to inactive the MBO1.

Next, add 18 microliters of 0.4 millimolar biotin 14-dATP, 2.25 microliters of an unmodified 3.3 millimolar dCTP-dGTP-dTTP mix, and eight microliters of five units per microliter DNA polymerase I Klenow fragment. Flick the tube to mix the contents and incubate the sample at 37 degrees Celsius for 90 minutes. Next, add 657 microliters of water, 120 microliters of 10X T4 DNA ligase buffer, 100 microliters of 10%Triton X100, six microliters of 20 milligrams per milliliter bovine serum albumin, and finally five microliters of five units per microliter T4 DNA ligase.

Next, rotate the tube gently at 20 RPM at room temperature for two hours. Add another five microliters of five units per microliter T4 DNA ligase. Continue rotating for two more hours, then spin down the nuclei at 2, 500 times g for five minutes.

After centrifugation, discard the supernatant. Resuspend the pellet in 500 microliters of extraction buffer and add 20 microliters of 20 milligrams per milliliter proteinase K.Flick the tube and incubate the tube to digest the protein. Add 130 microliters of five molar sodium chloride and incubate overnight to de-crosslink.

The next day, pipette the sample into a new two milliliter tube with low DNA binding characteristics. Add 0.1X volume of three molar sodium acetate and two microliters of 15 milligrams per milliliter GlycoBlue. Add 1.6 volumes of pure absolute ethanol and invert the contents, then incubate the sample at minus 80 degrees Celsius for 15 minutes.

After incubation, centrifuge the contents. Locate the DNA pellet which can only be spotted by the GlycoBlue. Remove the supernatant carefully, moving the pipette tip into the tube along the opposite wall from the DNA pellet.

Wash the pellet with 800 microliters of 70%ethanol. Mix the sample by inverting and centrifuge it at 20, 000 times g at room temperature for five minutes. Remove remaining droplets during this step and the following washes by pushing them out of the tubes with a P10 tip, then open lid to air dry for up to five minutes.

Once no liquid is remaining, add 50 microliters of 10 millimolar tris chloride. Repeatedly pipette the solution over the area where the pellet was located to solubilize the DNA. Add one microliter of 20 milligrams per milliliter RNase A.Mix by flicking the tube.

Incubate the sample at 37 degrees Celsius for 15 minutes to digest RNA. Finally, store the sample in the freezer or fridge until library preparation. Images of the EGFP PCNA signal of each sorted embryo batch reveal precise stage and cell cycle statuses of every single embryo for downstream experiments.

Bioanalyzer traces show that the size distribution of DNA fragments after size selection is between 300 to 700 base pairs with a maximum at around 450 base pairs. Hi-C interaction maps show that at nuclear cycle 12, few Topologically Associated Domains or TADs are detected which changes dramatically at nuclear cycles 13 and 14 when TADs are increasingly prominent and unspecific long range contacts are depleted. While attempting this procedure, it's important to remember to wash the beads thoroughly and not to prolong incubation times unnecessarily especially at high temperatures since this can lead to low quality Hi-C libraries.

This technique combining accurate staging and high-resolution chromatin confirmation mapping paved the way for researchers in the field of epigenetics to explore the role of three-dimensional chromatin organization in an in vivo developmental setting.

Explore More Videos

Chromatin Conformation CaptureChromatin ArchitectureGene ExpressionDevelopmentDrosophila EmbryosFormaldehyde FixationCell Cycle StagingEGFP PCNANuclear DensityNuclear CyclesFlash Freezing

Related Videos

Chromatin Immunoprecipitation Assay for Tissue-specific Genes using Early-stage Mouse Embryos

11:02

Chromatin Immunoprecipitation Assay for Tissue-specific Genes using Early-stage Mouse Embryos

Related Videos

18.3K Views

Chromatin Immunoprecipitation (ChIP) using Drosophila tissue

13:47

Chromatin Immunoprecipitation (ChIP) using Drosophila tissue

Related Videos

25.4K Views

Whole Mount RNA Fluorescent in situ Hybridization of Drosophila Embryos

09:57

Whole Mount RNA Fluorescent in situ Hybridization of Drosophila Embryos

Related Videos

18.6K Views

Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq

10:23

Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq

Related Videos

12.7K Views

TRAP-rc, Translating Ribosome Affinity Purification from Rare Cell Populations of Drosophila Embryos

10:26

TRAP-rc, Translating Ribosome Affinity Purification from Rare Cell Populations of Drosophila Embryos

Related Videos

18K Views

Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos

10:17

Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos

Related Videos

11.7K Views

Imaging and Analysis of Tissue Orientation and Growth Dynamics in the Developing Drosophila Epithelia During Pupal Stages

08:25

Imaging and Analysis of Tissue Orientation and Growth Dynamics in the Developing Drosophila Epithelia During Pupal Stages

Related Videos

9.7K Views

Drosophila Embryo Preparation and Microinjection for Live Cell Microscopy Performed using an Automated High Content Analyzer

05:52

Drosophila Embryo Preparation and Microinjection for Live Cell Microscopy Performed using an Automated High Content Analyzer

Related Videos

9K Views

Simultaneous Live Imaging of Multiple Insect Embryos in Sample Chamber-Based Light Sheet Fluorescence Microscopes

08:29

Simultaneous Live Imaging of Multiple Insect Embryos in Sample Chamber-Based Light Sheet Fluorescence Microscopes

Related Videos

3.3K Views

Dissection and Live-Imaging of the Late Embryonic Drosophila Gonad

09:08

Dissection and Live-Imaging of the Late Embryonic Drosophila Gonad

Related Videos

3.4K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code