生成CRISPR / Cas9介导的单等位基因缺失来研究小鼠胚胎干细胞功能增强

JoVE Journal
Developmental Biology

Your institution must subscribe to JoVE's Developmental Biology section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Moorthy, S. D., Mitchell, J. A. Generating CRISPR/Cas9 Mediated Monoallelic Deletions to Study Enhancer Function in Mouse Embryonic Stem Cells. J. Vis. Exp. (110), e53552, doi:10.3791/53552 (2016).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

Introduction

转录调控元件由于异常的基因表达2是发展1和修改这些元素的过程中的基因表达的时空微调可导致疾病的关键。通过全基因组关联研究发现了许多疾病相关的区域是在非编码区,并有转录增强子3-4的功能。识别增强剂并将它们与它们调节是复杂的,因为它们通常位于从它们调节基因几千个碱基远并且可以以组织特异性方式5-6被激活的基因匹配。增强剂的预测通常是基于组蛋白修饰的标记,介体黏着复合物和细胞类型特异性转录结合因子7-10。预测增强剂的验证是最经常通过一个基于矢量的测定,其中所述增强剂激活报告基因11-12的表达进行。这些数据提供了v有关推测的增强子序列的调节潜力aluable信息,但不透露自己的功能其内生基因组范围内或识别它们调节的基因。基因组编辑充当一个强有力的工具来研究由失功能分析在它们的内源上下文转录调控元件的功能。

在基因组编辑,即CRISPR / Cas9基因组编辑系统的最新进展,有利于基因功能的研究。的CRISPR / Cas9系统易于使用和适应性对于许多生物系统。所述Cas9蛋白靶向于由导的RNA(gRNA)13中的基因组中的特定位点。所述SpCas9 / gRNA复杂扫描对其靶基因组序列的基因组中它必须是5'到protospacer相邻基序(PAM)的序列,NGG 14-15。的gRNA到其目标,一个20个核苷酸(nt)的序列与gRNA互补的碱基配对,激活导致域金字塔之戒SpCas9核酸酶活Ë链断裂(DSB)3碱基的序列PAM的上游。特异性是通过在gRNA种子区域完全碱基配对来实现,所述6-12 nt下邻近于PAM;相反地,不匹配5'种子的通常耐受16-17。引入的DSB可以修复或者由非同源末端连接(NHEJ)的DNA修复或同源性定向修复(HDR)mechanisms.NHEJ DNA修复往往造成在目标部位的几个碱基对,可以破坏的插入/缺失(插入缺失)的基因的开放阅读框(ORF)。以产生在基因组2 gRNAs,侧翼感兴趣的区域大的缺失,可以使用18-19。这种方法是对聚成基因座控制区或超增强剂它比常规增强剂9,18,20-22较大转录增强子的研究中特别有用的。

单等位基因缺失是研究转录 -regulation一个有价值的模型。观察到昌E在转录水平的增强子的单等位基因缺失之后关联到在基因调控该增强剂的不当两个等位基因的转录可能受影响的影响蜂窝健身时可能出现的混杂影响的作用。评估减少的表达是困难的但不区分野生型等位基因的删除的能力。此外,基因分型在每个等位基因缺失而不区分两个等位基因的能力是具有挑战性的,尤其是对大缺失> 10kb的至1兆23,其中它是难以通过PCR扩增整个野生型区域。使用通过杂交小家鼠 129小家鼠castaneus生成的F1 ES细胞的允许两个等位基因通过等位基因特异性PCR 18,24区别开来。在这些细胞中的基因组杂交便于等位基因特异缺失筛选和表达分析。上平均有一个SNP位这两个基因组之间的每一个125 bp的为表达和基因分型提供在引物设计的灵活性的分析。一种SNP的存在可以影响引物的熔化温度(T M)与靶实时定量PCR(qPCR的)扩增特异性允许两个等位基因25的歧视。此外,引物的3'末端中的一个错配极大地影响DNA聚合酶从引物防止不期望的等位基因靶26的扩增延伸的能力。描述在下面的协议是使用CRISPR / Cas9基因组编辑系统( 图1)大于1 kb的等位基因特异性增强缺失和随后的表达分析使用F1 ES细胞。

图1
图1.增强删除使用CRISPR / Cas9研究 -reg基因表达的ulation。(A)中由小家鼠 129小家鼠castaneus之间的交叉产生的F1 ES细胞用于允许等位基因特异性缺失。 (B)中的两个导向的RNA(gRNA)用于诱导增强子区的一个大Cas9介导的缺失。 (C)的引物组被用于识别大的单-和双等位基因缺失。橙色引物是内引物,紫色引物外侧的引物和绿色的引物的gRNA侧翼引物。 (D)基因表达的变化是使用等位基因特异性qPCR的监控。俄罗斯足协表示相对荧光单位。 请点击此处查看该图的放大版本。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1.设计和建造的gRNA

  1. 删除转录增强子区域使用两个gRNAs一5'和一个3'的感兴趣区域的。使用由张实验室产生的鼠标UCSC基因组浏览器的轨道,以确定独特的gRNA序列(http://www.genome-engineering.org 15)。接下来检查这些gRNAs和他们的使用由桑格研究所(www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1211)27-28提供在线工具SNP和插入缺失相邻的PAM。要定位具有同等效率两个等位基因,避免含有SNP或插入缺失gRNA / PAM序列。
    1. 在选择gRNA,检查设计等位基因特异性引物进行基因分型缺失的可行性。参见第5节等位基因特异性引物设计。
  2. 组装基于在马里等人2013 15描述的协议两个gRNA质粒。包括所选择的独特的20 bp的靶序列INTO作为在表7所示的61mer寡核苷酸(序列显示在5'至3'方向,且粗体的碱是是彼此反向互补的20碱基对的靶序列)。
    1. 混合10μM的gRNA Primer_F的10微升和10微升10μM的互补Primer_R中的管。
    2. 通过温育在100℃下的引物混合5分钟退火的引物,然后冷却1℃/秒至25℃。对于此步骤,使用PCR仪或放置在沸水中的试管,并且允许其冷却至室温。
    3. 到退火的引物混合物中,添加以下反应混合物孵育在72℃进行30分钟至延伸每个引物:18.5微升水,10微升5×HF缓冲液中,1微升10毫的dNTP混合和0.5微升高的高保真DNA聚合酶。
    4. 运行在2%琼脂糖凝胶上10微升靶片段的确认100bp的指南片段已经产生。
    5. 线性化gRNA向量(来自地球的礼物RGE教堂; Addgene质粒#41824)15的Afl II通过使用以下的反应设置:5微升gRNA载体骨架(2-4微克),5微升10X缓冲液,3微升的Afl II的(20单位/微升)和32微升的水。孵育3小时将反应混合物在37℃。
    6. 运行在1%琼脂糖凝胶的消化产物和纯化对应于3.5kb的该DNA带用凝胶提取试剂盒按照制造商的说明书线性化gRNA载体。
    7. 1μl的线性gRNA载体(50纳克/微升),1μl的靶片段,10微升2×吉布森组件主混合物的组成:用线性gRNA矢量和目标从步骤1.2.3片段如下设置吉布森装配反应29-30和8微升的水。在50℃下孵育反应60分钟。
  3. 大肠杆菌细胞,组装gRNA载体转化。
    1. 混合1微升组装gRNA矢量从1.2.7和50μl的DH5α( 大肠杆菌菌株)细胞在管的。通过将细胞暴露于42℃45秒变换DH5α细胞通过热休克法。
    2. 卡扣冷却冰上5分钟管;然后加入400μl的SOC培养基和在振荡培养箱中于37℃孵育45分钟。
    3. 散布在LB卡那霉素(50微克/毫升)板转化细胞的阳性选择100微升DH5α细胞中,并在37℃孵育O / N。
  4. 筛查呈阳性大肠杆菌菌落gRNA插入。
    1. 挑在3ml LB卡那霉素抗性菌落重悬含有50μg/ ml卡那霉素。重复同样的6-8的殖民地和在37°CO / N所有的管子在摇床。
    2. 通过按照制造商的说明书提取使用质粒微型制备试剂盒从O / N生长培养质粒。
    3. 准备一个EcoRI位 I酶切反应混合物来检查gRNA序列插入在质粒。 2微升酶缓冲液,1微升EcoRI位我的,15微升的水:对于每个样品,如下制备反应混合物。分装反应混合物成1.5毫升管中,加入2微升质粒。孵育管在37℃下2小时。
    4. 运行上的1.5%琼脂糖凝胶的消化产物。
      注:将样品将显示一个475 bp的条带大小比无插件的克隆高100个基点。
      注意:可替换地,阳性克隆可通过菌落PCR,使用SP6启动(正向)和T7(反向)引物( 表7),该结合到载体序列,得到一个gRNA的存在下插入一个642 bp的大小片段进行筛选。菌落PCR方法中是有利的,当在gRNA序列内一个EcoRI位 I限制位点。
  5. 确认gRNA插入的DNA测序采用T7引物序列。

2.转

注意:电穿孔是转染质粒导入ES细胞的一种有效的方法。这里所描述的方法使用微孔器转染技术。

  1. 生长在含有10ml的ES细胞培养基( 表1)的10cm的明胶包被培养皿F1 ES细胞在37℃/ 5%CO 2。当细胞达到85%汇合删除媒体及加2ml胰蛋白酶。中的CO 2培养箱中5分钟,在37℃。
    注:芭芭拉平移24获得F1 ES细胞,并根据要求提供。
  2. 通过加入10ml自旋介质( 表2)的中和胰蛋白酶。移液器反复彻底分离细胞。
  3. 收集在一个15毫升管和旋转所有的细胞在300×g离心5分钟。在3ml PBS中重悬,并计算使用血球或自动细胞计数器细胞。
  4. 沉淀1×10 6 ES细胞中通过离心1.5ml的管中,在300×g离心于100μl的R 5分钟,重悬(再悬浮)缓冲器如由试剂盒制造商提供。
  5. 添加每个pCas9_GFP 5微克(从吉兰Musunuru的礼物; Addgene质粒#44719)31,5'和3'gRNA质粒对靶区域的缺失并用移液管轻轻混匀,以避免引入气泡。
  6. 使用电子枪头吸100微升的电组合,小心以避免在尖端泡沫。
  7. 程序的伏,宽度和电穿孔脉冲。对于F1胚胎干细胞,用1400伏,10毫秒3个脉冲。
  8. 虽然电运行观察尖端观看解决方案中的任何火花。的火花表示气泡的存在,并且将与转染干扰。
  9. 弹出转染的ES细胞入含有10ml的ES细胞培养基( 表1)在10cm明胶涂层培养皿并在37℃/ 5%CO 2孵育。

3.流式细胞分选转染细胞

  1. 48小时后,通过加入2 ml胰蛋白酶的分离的细胞,并在CO 2培养箱于37℃孵育5分钟。
  2. 通过加入10 ml收集缓冲液( 表3)中和该板。收集在一个15毫升管和自旋的细胞以300×g离心5分钟。
  3. 弃上清,重悬细胞于1ml分拣缓冲液( 表4)。算基于排序的平台上的细胞,并稀释。稀释细胞以0.5-1×10 6细胞/ ml的对分类到15ml试管和用于单个细胞直接分选入96孔板,稀释细胞以2-5×10 6个细胞/ ml。
  4. 排序Cas9-GFP + ES细胞使用FACS流式细胞仪32。作为用于菌落采摘,或排序的单个细胞在3.5中描述直接到含有100微升的ES细胞培养基/孔明胶包被的96孔板收集细胞散装在用2ml恢复介质( 表5)和板管(
  5. 种子1-1.5×10 4个 GFP + ES细胞在含有10毫升的ES细胞培养基( 表1)在10cm明胶包被培养皿中。在这样低的密度电镀有利于选择单独的ES细胞集落。

4.培养克隆基因分型,表达分析和冷冻细胞股票

  1. 关于排序后4-5天,得分直接排序96孔板的每个孔用于ES细胞集落的存在。
    1. 通过除去培养基并加入30微升的胰蛋白酶解离ES细胞集落。孵育在37℃下5分钟。通过加入170微升的ES细胞培养基( 表1)的中和胰蛋白酶,和吸管上下的集落的完整解离成单细胞。生长的细胞在37℃/ 5%CO 2,直到大部分井超过70%汇合(通常2-3天)。
  2. 使用或者挑选个人ES细胞集落10 cm的培养皿倒置显微镜。吸取菌落成枪头后续步骤4.1.1将每个集落于96孔平板的一个孔中,用明胶预处理​​和含有30微升胰蛋白酶之后。
    注:菌落胰蛋白酶在室温下坐而殖民地之一整行拾取。
  3. 一旦所有的菌落都被拾取和离解成培养基上生长的细胞在37℃的CO 2培养箱 ,直到大部分井超过70%汇合(通常为2天)。
  4. 当96孔板准备好拆分,取出介质,添加30微升的胰蛋白酶,并在37℃下孵育5分钟。通过加入180微升的ES细胞培养基( 表1),以每孔和吸管上下完全解离成单个细胞中和胰蛋白酶。
  5. 从所得210微升,种子70微升为三个明胶包被的96孔各自含有130微升的ES细胞培养基/孔( 表1)的平板上。使用这些板块为GEnotyping,表达分析和如下所述的冷冻细胞种群的每个克隆。
  6. 当基因分型板达到70-85%汇合,在第6章“基因分型删除”中所述治疗板。
  7. 当表达分析板达到70-85%汇合,除去介质,具有直到克隆已基因型在-80℃的密封胶带和存储密封板。
    注意:表达分析板是有用的克隆的早期传代来分析基因表达的变化。从96孔板的基因表达分析是可能的,但作为细胞数是低建议一个RNA微提取试剂盒。
  8. 96孔板冻结股票的制备:
    1. 当板对细胞冻存物(股票-1)达到70-85%汇合时,吸出介质中,添加30微升的胰蛋白酶,并在37℃下孵育5分钟。
    2. 通过加入100μl的ES细胞培养基中和胰蛋白酶( 表1)TØ每孔吸管向上和向下的完全分离成单个细胞。
    3. 转印悬浮的细胞的15微升每孔两个明胶包被的96孔板,每片含185微升的ES细胞培养基( 表1),并允许在37℃/ 5%CO 2生长。
      注:这是股票-2和-3板,它们分别时提供额外的备份克隆现货-1重振细胞不成功。
  9. 同时,在96孔板(股票-1)的100微升剩余的细胞,加入100μl的2×的冷冻培养基( 表6)。用密封胶带密封该板,并迅速翻转板4-5次进行适当的混合。在-80℃保存,直到盘克隆基因分型。
  10. 当股票-2和库存-3-板是准备用于冷冻抽吸介质中,添加30微升的胰蛋白酶,并在37℃下孵育5分钟。通过加入70微升的ES细胞培养基中和胰蛋白酶(T能1)至每孔并移液器上下完全解离成单细胞。
  11. 加入100微升2个冷冻介质,具有密封胶带密封板,迅速反转板适当混合4-5倍。直到需要这些板块在-80℃保存板。

5.等位基因特异性引物设计

  1. 设计4组引物( 图1C)以筛选所需的删除克隆:内部引物,外引物,以及gRNA侧翼引物(对于5'和3'gRNA目标位点),如下所述。
    1. 在获取相应http://labs.csb.utoronto.ca/mitchell/crispr.html的129和演员基因型SNP轨道。给定的轨迹显示在该MM9小鼠基因组组装的坐标129和演员之间的碱基替换。
      注:在上述网站的链接重定向到UCSC基因组浏览器,并添加含有129之间的SNP定制的跟踪和GE铸造nomes。
    2. 进入该区域的坐标被删除。放大在含有> 3个SNP所需的删除的中间约500bp的区域。
    3. 去查看> DNA在选项栏,点击获取DNA下载所有大写格式靶序列。
    4. 创建两个FASTA序列;一个用于129和一个用于在SNP位置饰演通过碱基取代。由小写的标记单核苷酸多态性。
    5. 去引物3加号(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/)并粘贴SNP取代129序列。使用默认的设置来设计引物。
    6. 为了设计里面等位基因特异性引物,在任务下拉菜单中选择Primer_List并单击选择引物。选择正向或反向引物,有一个SNP无论是在3'末端或内从3 4基“以及落入内的区域被删除。
      注意:必须在3'末端显示一个SNP引物的qPCR增加等位基因特异性。
    7. 选择第二个底返回到主页面,在任务下拉菜单中选择检测,并在页面的底部粘贴在相应的框中的第一个引物序列。在常规设置选项卡更改产品尺寸范围设置为80-200基点,并单击选择引物。选择了底漆从上市引物对设置;这些将是129内等位基因特异性引物。
    8. 重复步骤5.1.5至5.1.7设计引物的演员等位基因。
    9. 返回到UCSC基因组浏览器,并输入该区域的坐标被删除。去查看> DNA在选项栏,在顺序检索区选项上游增加1000 bp和下游点击获取DNA下载靶序列。
    10. 马克括号中的gRNA靶序列。继续之前保存这个整个序列。
    11. 为了设计外引物拆除两个gRNA靶序列之间的序列。重复步骤5.1.4-5.1.8设计外等位基因特异性引物小号但改变产品尺寸400-800基点。
    12. 拆分在步骤5.1.10得到的序列分成两个序列,每500 bp的5'和3'的gRNA靶序列。重复步骤gRNA侧翼区5.1.5到5.1.7设计非等位基因特异性引物,但改变产品尺寸400-800基点。
      注意:对于非等位基因特异性引物,无论是129或可用于铸造序列和引物的选择应不包含一个SNP。明智的做法是设置400-800 bp的产品尺寸设计之外,gRNA侧翼引物。这允许放大即使小插入缺失存在。
  2. 使用纯129和演员株的基因组DNA在2毫微克/微升通过qPCR测试等位基因特异性引物内。按照步骤6.2-6.4建立定量PCR反应。
    注意:如果129基因型在目标区域是相同的C57BL / 6J,从C57BL / 6J DNA可在129 DNA的地方使用。等位基因特异性引物应显示至少5个循环在正确的Ct(循环阈值)值与不正确的基因型差异。外面的引物进行测试,以确保它们扩增使用Cas9 / gRNA转染的ES细胞的缺失,与F1基因组DNA分别作为阳性和阴性对照。外引物的等位基因特异性可以一旦单等位基因的克隆已经鉴定测试。

6.基因分型的缺失

  1. 提取使用来自步骤4.6所菌落膨胀后所产生的板的基因分型的96孔板的基因组DNA。
    1. 制备的基因组DNA的提取混合物:89微升水,10微升10X缓冲液和1μl的提取试剂(由生产商提供)。加入100μl的基因组DNA的提取混合物的向每个孔和密封用密封胶带的板。
    2. 孵育所述板在75℃下进行5分钟,随后95℃5分钟。
    3. 允许该板在冰上温育几个min的冷却ð然后短暂离心解决任何冷凝井的底部。此作为模板DNA板为删除筛选。
  2. 设置一式两份的qPCR反应对每个克隆如下:5微升2×SYBR qPCR的混合物,正向和反向引物(3μM)各1微升和1微升的水。使用多道移液器到2微升模板DNA,接着8微升反应混合物添加至各孔384孔板的。
  3. 密封带600 XG密封带和旋转2分钟以混合内容物的板。放置在实时PCR仪的384孔板阵列。
  4. 程序进行熔融曲线分析,检出了两步PCR的实时PCR仪如下:在95℃下1个循环10分钟,15秒95℃40个循环,62℃,用读板30秒和95℃10秒,65℃至95℃与5℃增量为5秒+读板。
    注意:除了引物设计中,定量PCR英里x和循环参数也有助于引物的特异性。和在材料中列出上述参数试剂更频繁地产生等位基因特异性扩增。
  5. 定量PCR分析结果
    1. 检查每个等位基因与内等位基因特异性引物的扩增。一个等位基因的不扩增或等位基因之间高Ct值差异(> 5周期)表明这些克隆携带的高/缺席Ct值的等位基因的杂合缺失。两个等位基因的无扩增表明它们携带纯合缺失。
    2. 检查每个等位基因与外部等位基因特异性引物的扩增。当目标缺失比与外部引物1 KB的扩增较大时才会发生缺失存在。 22-28 Ct值确认删除。对于大于1 KB的目标缺失,确认通过电泳扩增子大小。
      注意:如果外引物仅显示适度的等位基因特异性(见Figu重2),扩增子可以与由于外部的引物脱靶扩增两个等位基因的引物组在单等位基因的克隆而获得。在这种情况下,至少五个循环的两个等位基因之间的Ct值差异应该确认正确等位基因(低级Ct值),是基于从内侧引物获得的结果被删除。如果目标与脱靶等位基因的Ct差小于五个周期设计出新的等位基因特异性引物外。
    3. 在单等位基因缺失克隆通过使用二次筛选,gRNA侧翼引物检查未删除等位基因的完整性。
      注:gRNA目标部位周围> 25基点大小的插入缺失,可以通过观察400-800 bp的扩增子在qPCR的熔体曲线的移动来识别。或者,从gRNA侧翼引物的扩增子进行测序,以检测<25个碱基对小插入缺失。
      1. 用2台gRNA侧翼引物,即 ,5'和3'G执行的qPCR生成CRISPR删除使用RNA。与这些组引物无扩增指示插入缺失比的qPCR扩增较大存在于上单等位基因缺失克隆的未删除等位基因的gRNA目标部位。含有从进一步分析的结果,这些大插入缺失丢弃克隆可能难以在不知道删除的范围来解释。
  6. 净化从使用PCR清理试剂盒依照制造商的指令外引物的qPCR反应中得到的扩增子。
  7. 确认删除的等位基因的通过DNA测序来自前面步骤的纯化的PCR产物的序列。使用定量PCR扩增的引物为正向和反向测序。
    注意:在扩增子充当删除等位基因的基因型的二次确认内这一阶段的SNP。

7.等位基因特异性引物表达分析

  1. 解冻96孔细胞库存复吃了被放置在一个温暖的澡珠储存在-80°C(股票1步骤4.9)。当超过半数在板孔中解冻,旋在300×g离心5分钟。
  2. 小心,除去密封带,并迅速从删除阳性孔转移细胞进入含有1ml ES细胞培养基( 表1)的明胶包被的12孔板,并在37℃/ 5%CO 2孵育。
  3. 当板达到70-85%汇合时,通道中的细胞,并分成三个孔中明胶包被,6孔板,每个含2ml ES细胞培养基( 表1)。使用两个孔以制备2瓶细胞冻存物的为在液氮长期贮存(步骤8中描述的)和用于RNA提取的第三阱。
  4. 使用RNA提取试剂盒提取RNA。
  5. 通过逆转录(RT)使用按照制造商的协议中的cDNA合成试剂盒的RNA转变100-500毫微克的RNA成cDNA。包括RTñ对于每个RNA样品egative反应监测RNA样本中污染DNA的量。
  6. 稀释的qPCR之前的cDNA中的1之间的比值:2和1:4;取决于在ES细胞中靶基因的表达水平。
  7. 上述包括F1基因组DNA作为转录水平的绝对定量标准曲线(从250 5倍稀释至0.08纳克/微升)的说明设置的qPCR。比较,在每个确认删除克隆到一个适当的控制基因感兴趣的基因的各等位基因的表达,例如GAPDH( 表7中所列的引物)。
    注意:控制基因的引物不需要是等位基因特异性。等位基因特异性引物的设计是作为与目标区域的异常扩增用于基因分型的引物描述用于RT-qPCR的引物是相同的。基因序列应该使用;如果使用引物对单个外显子或外显子 - 内含子边界(监测初级转录物)的F1基因组DNA,可用于标准曲线。有关RT-qPCR的进一步详情,请参阅Forlenza 。 2012 33。

8.冻结股票准备ES细胞的长期储存

  1. 添加300μl的胰蛋白酶的每个6孔(来自步骤7.3)中并在37℃孵育5分钟。加2ml自旋介质( 见表2),以中和胰蛋白酶和吸管上下数次以解离成单细胞。
  2. 转移细胞进入一个15ml试管和自旋在300×g离心5分钟。
  3. 吸出上清液,并加入500μl的ES细胞培养基( 表1)的。吸管上下悬浮细胞。
  4. 内容转移到1.5 ml离心管管加入500微升2个胚胎干细胞冷冻介质( 表3)。颠倒离心管拌匀管放入无酒精的细胞冷冻集装箱。把这个细胞冷冻容器在-80℃下转前至少12小时克到液氮贮罐。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

这里所描述的协议使用的F1 ES细胞,研究基因表达的顺式 -regulation使用CRISPR / Cas9基因组编辑( 图1)产生的单等位基因增强剂删除的细胞。用于基因分型和基因表达的gRNA和等位基因特异性引物的设计是在该方法的关键因素。每个等位基因特异性引物组必须通过qPCR进行验证,以确认等位基因特异性。等位基因特异性引物仅扩增各自的基因组DNA靶标是理想的( 图2)。理想的情况下,这些引物具有在其3'末端的单核苷酸多态性。用更少的等位基因特异性引物可,如果他们在他们的正确与不正确的基因型25的放大显示的最小5 Ct值差异的使用。携带一个SNP多5“比从3第四基地'端引物通常不表现出等位基因特异性和具有同等效率放大两种基因型,揭示在底漆34的SNP位置的重要性。此外嘌呤/嘌呤或嘧啶/嘧啶替换已被证明对相比嘌呤/嘧啶替代25的两个引物的Tm的差异的影响更大。

从ES细胞克隆中分离DNA的96孔板的初筛与等位基因特异性内引物进行的,以确定携带在一个或两个等位基因的缺失克隆。这些已删除的克隆与外部等位基因特异性引物的进一步筛选,以确认每次删除。这里给出的例子是由一个高效gRNA一对,导致在129,铸造,或两个等位基因( 图3)携带缺失克隆的46%。二次筛选为证实单等位基因缺失克隆,以确定在非缺失等位基因作为插入缺失occurr的频率周围的gRNA靶位点插入缺失做ENCE在gRNA靶位高23。围绕gRNA插入缺失不是在初级筛选识别的,因为这些克隆显示与内部引物没有缺失和不与外引物( 图4)放大。该给放大用两组左右gRNA侧翼引物单等位基因缺失克隆具有自己的其他等位基因基本完好,因为它们不包含缺失比5'或3'侧翼gRNA扩增大。测序从gRNA侧翼的引物的扩增子将识别插入缺失比gRNA侧翼扩增子可能不是在qPCR的明显较小。并不以在二次筛选两个区域得到扩增的单等位基因缺失克隆中不包含进一步的基因表达分析。作为gRNA靶区域被选择区域外的怀疑有增强作用,插入缺失比gRNA侧翼扩增子更小可能不会影响增强功能和克隆CON泰宁这些可以包括在进一步的分析。

要限制大缺失一个等位基因gRNA可以选择重叠种子区域或PAM一个SNP。这里描述的是一个高效率的缺失(53%)的129等位基因的例子,由于在PAM进行3'gRNA上投射等位基因的SNP( 图5)。此删除除去可控硅,在ES细胞18,22一个最近描述Sox2的特异性增强。虽然引进了大缺失的上投射等位基因大大减少,三个克隆(1,11,75)被确定与投射等位基因的大缺失( 图5)。这三个克隆中有两个(1,11)包含gRNA目标区域“的3的50个基点之内破发点'3。对第三个克隆我们无法识别的3'断点并得出结论认为缺失大于11 kb的18。的一个或两个的缺失红外断点位于> 100bp的从任一'3'5 gRNA目标区域难以基因型,一般占所有克隆的15-30%,并保持在初筛未表征的缺失不与外界扩增引物。

一旦与单等位基因缺失克隆已经鉴定他们正在使用绝对定量逆转录的qPCR分析等位基因特异的基因的表达。从携带临界Sox2的增强子区域,这个SCR的单等位基因缺失克隆基因的表达,在这里显示与野生型F1 ES细胞( 图6)的表达进行比较。具体来说,背着缺失增强区域对129等位基因的克隆显示减少129转录水平,而在演员等位基因携带缺失克隆显示在演员转录水平的下降。等位基因特异性基因表达的分析揭示第在这个远端增强区域,SCR,是在ES细胞18 Sox2的一个关键高频调节。

图2
图2.测试的129和铸造等位基因特异性引物的等位基因特异性。(A)中,从对129基因型的引物扩增。从该铸造型引物(B)扩增。在A和B两者的线显示为具有相同的基因型如在这些特定的SNP 129的DNA的C57BL / 6基因组DNA扩增型材;用空心圆线显示为演员的基因组DNA扩增曲线。从具有最等位基因特异性引物组得到的扩增以绿色示出(等位基因特异性引物1),显示5的Ct差异的引物组是在紫色(等位基因特异性引物2)和引物组显示示出在Ct值最小差为represented在红色(等位基因特异性引物3,在表7引物详情)。红色引物组将不适合于特定等位基因的筛选。俄罗斯足协表示相对荧光单位。 请点击此处查看该图的放大版本。

图3
图3.结果筛选96孔板用等位基因特异性内外引物后得到:(A)从与内部引物(Enh_del_IS_F1_129,Enh_del _IS_F1C,Enh_del _IS_R1)B)中的qPCR结果从与外部屏幕上的画面的qPCR结果引物(Enh_del_OS_F1,增强子del_OS_R1_129,Enh_del_OS_F2C,Enh_del_OS_R3,在表7引物详情)。在这两个灰色条特定角色引物扩增代表和黑条129-特定拘谨代表放大 ERS。注意在一个具有缺失,只有克隆或两个等位基因都与外面的引物进行筛选。每个等位基因的相对扩增用2 -CT近似的初始浓度,随后表现每个等位基因的两个等位基因的总和的百分比计算。 请点击此处查看该图的放大版本。

图4
图4.克隆用单等位基因缺失筛选在gRNA靶位点,以确定大插入缺失。引物侧接gRNA目标区域被用于确认非缺失等位基因是完整的。仅没有在上未删除等位基因靶位点大插入缺失单等位基因克隆在随后的表达分析使用。 tp_upload / 53552 / 53552fig4large.jpg“目标=”_空白“>点击此处查看该图的放大版本。

图5
图5.从 Sox2的 SCR缺失所示 得到的克隆从里面引屏幕定量PCR结果(pr111R,pr111F_129,pr111F_Cast,表7中详细说明)。灰色条特定角色引物扩增代表和黑条代表从129特异性引物的扩增。注意,删除是朝向129等位基因严重倾斜,由于一个单核苷酸多态性的在3'gRNA目标区域上投射等位基因在PAM的存在。每个等位基因的相对扩增使用2- -CT逼近的初始浓度,并随后表达各等位基因的两个等位基因的总和的百分比来计算。文件/ ftp_upload / 53552 / 53552fig5large.jpg“目标=”_空白“>点击此处查看该图的放大版本。

图6
图6.可控硅缺失显着降低 Sox2的 表达 代表性结果,从129或投射可控硅删除克隆。红色条代表Sox2的演员等位基因表达和蓝条表示Sox2的 129等位基因的扩增。可控硅对129等位基因降低Sox2的的(129),而对Sox2的 (CAST)的演员等位基因表达降低了SCR的缺失表达缺失。显示的数据是三个技术重复的平均,没有显示错误吧。用于Sox2的表达分析[Sox2_F,Sox2的(129)_R,Sox2的(饰演)_R]的引物列于表7中 。PLOAD / 53552 / 53552fig6large.jpg“目标=”_空白“>点击此处查看该图的放大版本。

试剂 股权集中度 最终浓度
GLUTAMAX 200毫米 6毫升 2毫米
2-巯基乙醇 10毫 6毫升 0.1毫米
的MEM非必需氨基酸(NEAA) 10毫 6毫升 0.1毫米
丙酮酸钠 100毫米 6毫升 1毫米
青霉素/链霉素 10000台 3毫升 50单位/毫升
FBS 90毫升 15% CHIR99021 * 10毫 3μM
PD0325901 * 10毫 1μM
LIF * 10 7单位/ ml 1000 U / ml的
#制备的ES细胞培养基,将上述组分添加至500ml高葡萄糖DMEM中。在ES细胞培养基不应该存储为4周以上并用抑制剂*不超过2周。

表1. ES细胞培养基。

试剂 股权集中度 最终浓度
GLUTAMAX 200毫米 5毫升 2毫米
青霉素/链霉素 10000台 5毫升 100单位/毫升
FBS 50毫升 10%
#准备旋转介质,上面的组件添加至500ml高糖DMEM的。

表2.旋转介质。

试剂 最终浓度 体积(50毫升)中
1X PBS无钙/镁2+ 42.0毫升
BSA馏分V(7.5%) 15%(体积/体积) 7.5毫升
的0.5M EDTA > 5毫米 0.5毫升

表3.收集缓冲区。

试剂 最终浓度 体积(50毫升)中
1X HBSS 47.25毫升
1M HEPES 25毫米 1.25毫升
的0.5M EDTA 5毫米 0.5毫升
BSA馏分V(7.5%) 1%(V / V) 0.5毫升
FBS 1%(V / V) 0.5毫升

表4.排序缓冲区。

方法“> 胚胎干细胞媒体 60% FBS 40%

表5.恢复介质。

胚胎干细胞媒体 60%
FBS 20%
DMSO 20%

表6. 2个冷冻介质。

表7a
表7B
表7列出的引物。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

CRISPR / Cas9介导的基因组编辑技术为基因改造一个简单,快捷,廉价的方法。这里详细生成和分析单等位基因缺失的增强功能性增强特性的方法发生在F1小鼠细胞单核苷酸多态性的优势的。这种类型的方法的优点是:1)单等位基因增强剂缺失不产生时的临界增强剂是从两个等位基因缺失, ,在规定的基因导致细胞杀伤力的蛋白水平大大降低的或改变的发生的混杂影响表型; 2)如果单等位基因缺失的频率是低获得纯合性缺失被不太可能;然而,在基因表达分析中使用的等位基因特异性引物之一可以分析与单等位基因缺失克隆; 3)采用四组引物筛选单等位基因缺失允许含有混淆的部分或大的缺失克隆消除下游分析。

等位基因特异性引物的设计是用于基因分型单/双等位基因CRISPR缺失和分析在等位基因特异性方式对基因表达的影响是至关重要的。时所用的F1的细胞中含有更频繁的SNP,允许两个等位基因的鉴别这是更容易实现。在这里,ES来自小家鼠 129点¯x 亩castaneus交叉使用生成的细胞;然而,也可以使用其它细胞如果两个等位基因之间的SNP允许等位基因特异性缺失筛选和表达分析,并且如果存在足够的数据来预测活性增强子区,以在所选择的细胞类型中进行定位。因此,该方法可以适用于任何细胞系,其中有关的等位基因的SNP信息可用。一协议的限制是关于在特定位置的SNP的依赖性。有些目标区域进行SNP位点少这使得设计出扩增<800 bp的˚F等位基因特异性引物的外ragment有挑战性。在这种情况下,PCR方法中,可作为一种替代的qPCR筛选允许更大的扩增子。此外,还有可能在F1中ES细胞的表型的SNP相关的差异;以确认特定增强剂的功能中附加的基因型的纯合子缺失可在标准ES细胞系进行。所述SpCas9核酸酶的特异性是尤其在考虑的临床方法的潜在应用的一个重要问题。调查SpCas9特异性显露两者gRNA识别序列的6-12个核苷酸的种子区域和相邻的PAM是核酸酶活13-14,17重要。脱靶的突变可以通过确保点火区和邻近的PAM是被修改14,16在基因组中唯一被最小化。

这里描述加上等位基因特异性RNA-SEQ一个单等位基因缺失的方法可以明确揭示由特定电子调节的基因或基因nhancer 18。这些实验是为理解基因功能缺失甚至记者的测定法验证增强剂并不总是影响基因表达18重要。此外,增强子可以不调节在基因组中的接近的基因,或者可以调节多个基因1,20,35。其结果是,失功能分析是最翔实的方法来确定一个增强子区的功能。这可以通过使用CRISPR / Cas9介导的单等位基因缺失迅速实现。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

笔者看了朱庇特的关于利益冲突的政策,并没有冲突披露。

Materials

Name Company Catalog Number Comments
Phusion High-Fidelity DNA Polymerase NEB M0530S high fidelity DNA polymerase used in gRNA assembly
Gibson Assembly Master Mix NEB E2611L
gRNA_Cloning Vector Addgene 41824 A target sequence is cloned into this vector to create the gRNA plasmid
pCas9_GFP Addgene 44719 Codon-optimized SpCas9 and EGFP co-expression plasmid
AflII NEB R0520S
EcoRI NEB R3101S
Neon Transfection System 100 µL Kit Life Technologies MPK10096 Microporator transfection technology
prepGEM ZyGEM PT10500 genomic DNA extraction reagent
Nucleo Spin Gel & PCR Clean-up Macherey-Nagel 740609.5
High-Speed Plasmid Mini Kit Geneaid PD300
Maxi Plasmid Kit Endotoxin Free  Geneaid PME25
SYBR select mix for CFX Life Technologies 4472942 qPCR reagent
iScript cDNA synthesis kit Bio-rad 170-8891 Reverse transcription reagent
0.25% Trypsin with EDTA Life Technologies 25200072
PBS without Ca/Mg2+ Sigma D8537
0.5 M EDTA Bioshop EDT111.500
HBSS Life Technologies 14175095
1 M HEPES Life Technologies 13630080
BSA fraction V (7.5%) Life Technologies 15260037
Max Efficiency DH5α competent cells Invitrogen 18258012
FBS ES cell qualified FBS is subjected to a prior testing in mouse ES cells for pluripotency
DMSO Sigma D2650
Glutamax Invitrogen 35050
DMEM Life Technologies 11960069
Pencillin/Streptomycin Invitrogen 15140
Sodium pyruvate Invitrogen 11360
Non-essential aminoacid Invitrogen 11140
β-mercaptoethanol Sigma M7522
96-well plate Sarstedt 83.3924
Sealing tape Sarstedt 95.1994
CoolCell LX Biocision BCS-405 alcohol-free cell freezing container
CHIR99021 Biovision 1748-5 Inhibitor for F1 ES cell culture
PD0325901 Invivogen inh-pd32 Inhibitor for F1 ES cell culture
LIF Chemicon ESG1107 Inhibitor for F1 ES cell culture

DOWNLOAD MATERIALS LIST

References

  1. Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M., Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development. 132, (4), 797-803 (2005).
  2. Kleinjan, D. A., Lettice, L. A. Long-range gene control and genetic disease. Adv Genet. 61, 339-388 (2008).
  3. Visel, A., Rubin, E. M., Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature. 461, (7261), 199-205 (2009).
  4. Maurano, M. T., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 337, (6099), 1190-1195 (2012).
  5. Heintzman, N. D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459, (7243), 108-112 (2009).
  6. Shen, Y., et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 488, (7409), 116-120 (2012).
  7. Johnson, D. S., Mortazavi, A., Myers, R. M., Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 316, (5830), 1497-1502 (2007).
  8. Rhee, H. S., Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 147, (6), 1408-1419 (2011).
  9. Whyte, W. A., et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 153, (2), 307-319 (2013).
  10. Chen, C. Y., Morris, Q., Mitchell, J. A. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. BMC Genomics. 13, (1), 152 (2012).
  11. Patwardhan, R. P., et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 30, (3), 265-270 (2012).
  12. Melnikov, A., et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 30, (3), 271-277 (2012).
  13. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, (6096), 816-821 (2012).
  14. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339, (6121), 819-823 (2013).
  15. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339, (6121), 823-826 (2013).
  16. Hsu, P. D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31, (9), 827-832 (2013).
  17. Cho, S. W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, (1), 132-141 (2014).
  18. Zhou, H. Y., et al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev. 28, (24), 2699-2711 (2014).
  19. Fujii, W., Kawasaki, K., Sugiura, K., Naito, K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 41, (20), e187 (2013).
  20. Tuan, D. Y., Solomon, W. B., London, I. M., Lee, D. P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human 'beta-like globin' genes. Proc Natl Acad Sci U S A. 86, (8), 2554-2558 (1989).
  21. Amano, T., et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev Cell. 16, (1), 47-57 (2009).
  22. Li, Y., et al. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One. 9, (12), e114485 (2014).
  23. Canver, M. C., et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 289, (31), 21312-21324 (2014).
  24. Mlynarczyk-Evans, S., et al. X chromosomes alternate between two states prior to random X-inactivation. PLoS Biol. 4, (6), e159 (2006).
  25. Lefever, S., Pattyn, F., Hellemans, J., Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem. 59, (10), 1470-1480 (2013).
  26. Huang, M. M., Arnheim, N., Goodman, M. F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 20, (17), 4567-4573 (1992).
  27. Keane, T. M., et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 477, (7364), 289-294 (2011).
  28. Yalcin, B., et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 477, (7364), 326-329 (2011).
  29. Gibson, D. G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 6, (5), 343-345 (2009).
  30. Gibson, D. G., Smith, H. O., Hutchison, C. A., Venter, J. C., Merryman, C. Chemical synthesis of the mouse mitochondrial genome. Nat Methods. 7, (11), 901-903 (2010).
  31. Ding, Q., et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12, (4), 393-394 (2013).
  32. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J Vis Exp. (41), (2010).
  33. Forlenza, M., Kaiser, T., Savelkoul, H. F., Wiegertjes, G. F. The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. Methods Mol Biol. 820, 7-23 (2012).
  34. Wu, J. H., Hong, P. Y., Liu, W. T. Quantitative effects of position and type of single mismatch on single base primer extension. J Microbiol Methods. 77, (3), 267-275 (2009).
  35. Sanyal, A., Lajoie, B. R., Jain, G., Dekker, J. The long-range interaction landscape of gene promoters. Nature. 489, (7414), 109-113 (2012).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please sign in or create an account.

    Usage Statistics