Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

2.20: Specific Heat

JoVE Core

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

Specific Heat

2.20: Specific Heat

A substance’s specific heat capacity refers to the amount of energy required to heat one gram of the substance by one degree. Water has a high heat capacity, so it takes a lot of heat to increase its temperature. Similarly, water must lose a lot of heat for its temperature to decrease, so it also cools slowly once heated. Metals, by comparison, have a low heat capacity—they heat up quickly and cool down quickly.

Specific heat capacity is defined as the amount of energy needed to raise the temperature of one gram of a substance by one degree Celsius (1 °C). For example, increasing the temperature of one gram of water by 1 °C requires one calorie of heat energy. Specific heat capacity is often represented in grams, degrees Celsius, and calories, but it can also be expressed in kilograms, Kelvin (K), and joules (among other units). The specific heat capacity of water is one calorie/gram °C, or 4186 joules/kilogram K. Solid gold has a specific heat capacity of ~0.03 calories/gram °C, or 129 joules/kilogram K. Gold, then, has a lower specific heat capacity than water.

Practical Nature

The high heat capacity of water helps modulate extreme environmental temperatures. Towns near large bodies of water have smaller changes in temperature both daily and seasonally. During the day, the nearby water absorbs heat energy, cooling the surrounding land. At night, the water releases its heat energy, keeping the area warmer. Towns far away from large bodies of water can experience large swings in daily and seasonal temperature. Sand and rocks have lower heat capacities, so they heat up quickly during the day and release heat quickly at night.

In space, water boils and then freezes. This happens in part because of water’s high heat capacity. In space, water first boils because of the extremely low pressure. In this gaseous state, the water vapor molecules are further apart and can lose heat quickly in the very cold temperatures of space. The water vapor then freezes into crystals—a process called desublimation.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter