Summary

मिलान विशेष टी कोशिकाओं की MHC tetramer आधारित संवर्धन: पेप्टाइड

Published: October 22, 2012
doi:

Summary

MHC tetramers और चुंबकीय microbeads मिलान विशेष टी कोशिकाओं की कम आवृत्ति आबादी को अलग करने और उन्हें प्रवाह cytometry द्वारा विश्लेषण: इस प्रोटोकॉल पेप्टाइड के उपयोग का वर्णन करता है. इस विधि अंतर्जात से ब्याज की टी सेल की आबादी के प्रत्यक्ष अध्ययन के लिए सक्षम बनाता है<em> Vivo में</em> प्रयोगात्मक सिस्टम.

Abstract

A basic necessity for researchers studying adaptive immunity with in vivo experimental models is an ability to identify T cells based on their T cell antigen receptor (TCR) specificity. Many indirect methods are available in which a bulk population of T cells is stimulated in vitro with a specific antigen and epitope-specific T cells are identified through the measurement of a functional response such as proliferation, cytokine production, or expression of activation markers1. However, these methods only identify epitope-specific T cells exhibiting one of many possible functions, and they are not sensitive enough to detect epitope-specific T cells at naive precursor frequencies. A popular alternative is the TCR transgenic adoptive transfer model, in which monoclonal T cells from a TCR transgenic mouse are seeded into histocompatible hosts to create a large precursor population of epitope-specific T cells that can be easily tracked with the use of a congenic marker antibody2,3. While powerful, this method suffers from experimental artifacts associated with the unphysiological frequency of T cells with specificity for a single epitope4,5. Moreover, this system cannot be used to investigate the functional heterogeneity of epitope-specific T cell clones within a polyclonal population.

The ideal way to study adaptive immunity should involve the direct detection of epitope-specific T cells from the endogenous T cell repertoire using a method that distinguishes TCR specificity solely by its binding to cognate peptide:MHC (pMHC) complexes. The use of pMHC tetramers and flow cytometry accomplishes this6, but is limited to the detection of high frequency populations of epitope-specific T cells only found following antigen-induced clonal expansion. In this protocol, we describe a method that coordinates the use of pMHC tetramers and magnetic cell enrichment technology to enable detection of extremely low frequency epitope-specific T cells from mouse lymphoid tissues3,7. With this technique, one can comprehensively track entire epitope-specific populations of endogenous T cells in mice at all stages of the immune response.

Protocol

1. Lymphoid ऊतक से सेल अलगाव बर्फ के ठंडे (EHAA + 10% FBS, कलम / strep, gentamycin, 2 मिमी एल glutamine, 55 मिमी 2-mercaptoethanol) cEHAA या अन्य समकक्ष टी सेल मध्यम 1 मिलीग्राम एक 60 मिमी संस्कृति का एक छोटा सा वर्ग युक्त पकवान, जोड़ें 100 सुक्ष्ममापी नायलॉ?…

Representative Results

चित्रा 1 प्रतिनिधि pMHCII टेट्रामर समृद्ध और अनुभवहीन चूहों से तिल्ली लिम्फ नोड के नमूने के प्रवाह cytometry भूखंडों को दर्शाया गया है, जबकि 2 चित्रा पहले प्रासंगिक पेप्टाइड + CFA के साथ प्रतिरक्षित चू…

Discussion

pMHC टेट्रामर आधारित सेल संवर्धन विधि इस प्रोटोकॉल द्वारा प्रस्तुत अंतर्जात टी सेल repertoires से मिलान विशेष टी कोशिकाओं का अध्ययन करने के लिए एक शक्तिशाली उपकरण है. मिलान विशेष टी कोशिकाओं के उनके TCRs की क्षमत?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए इस प्रोटोकॉल के विकास में मदद के लिए आंद्रे हान और लॉरेंस येन तकनीकी सहायता के लिए और जेनकींस प्रयोगशाला के सदस्यों को धन्यवाद करना चाहते हैं.

Materials

Reagent Vendor Catalog number
PE or APC conjugated pMHC tetramer (or multimer) Made by investigator, obtained from the NIH tetramer core, or purchased from commercial sources
Anti-PE conjugated magnetic microbeads Miltenyi 130-048-801
Anti-APC conjugated magnetic microbeads Miltenyi 130-090-855
LS magnetic columns Miltenyi 130-042-401
MidiMACS or QuadroMACS magnet Miltenyi 130-042-302 or 130-090-976
Cell counting beads Life Technologies PCB-100

References

  1. Knutson, K. L., dela Rosa, C., Disis, M. L. Laboratory analysis of T-cell immunity. Front Biosci. 11, 1932-1944 (2006).
  2. Kearney, E. R., Pape, K. A., Loh, D. Y., Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1, 327-339 (1994).
  3. Moon, J. J. Tracking epitope-specific T cells. Nat Protoc. 4, 565-581 (2009).
  4. Hataye, J., Moon, J. J., Khoruts, A., Reilly, C., Jenkins, M. K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science. 312, 114-116 (2006).
  5. Marzo, A. L. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol. 6, 793-799 (2005).
  6. Davis, M. M., Altman, J. D., Newell, E. W. Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nature reviews. Immunology. 11, 551-558 (2011).
  7. Moon, J. J. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 27, 203-213 (2007).
  8. Seah, S. G. The linear range for accurately quantifying antigen-specific T-cell frequencies by tetramer staining during natural immune responses. European Journal of Immunology. 41, 1499-1500 (2011).
  9. Obar, J. J., Khanna, K. M., Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity. 28, 859-869 (2008).
  10. Daniels, M. A., Jameson, S. C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med. 191, 335-346 (2000).
  11. Pittet, M. J. Alpha 3 domain mutants of peptide/MHC class I multimers allow the selective isolation of high avidity tumor-reactive CD8 T cells. Journal of Immunology. 171, 1844-1849 (2003).
  12. Choi, E. M. High avidity antigen-specific CTL identified by CD8-independent tetramer staining. Journal of Immunology. 171, 5116-5123 (2003).
  13. Chu, H. H. Positive selection optimizes the number and function of MHCII-restricted CD4+ T cell clones in the naive polyclonal repertoire. Proc Natl Acad Sci U S A. 106, 11241-11245 (2009).
  14. Chu, H. H., Moon, J. J., Kruse, A. C., Pepper, M., Jenkins, M. K. Negative Selection and Peptide Chemistry Determine the Size of Naive Foreign Peptide-MHC Class II-Specific CD4+ T Cell Populations. J Immunol. 185, 4705-4713 (2010).
  15. Legoux, F. Impact of TCR reactivity and HLA phenotype on naive CD8 T cell frequency in humans. J Immunol. 184, 6731-6738 (2010).
  16. Alanio, C., Lemaitre, F., Law, H. K., Hasan, M., Albert, M. L. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood. 115, 3718-3725 (2010).
  17. Kwok, W. W. Frequency of Epitope-Specific Naive CD4+ T Cells Correlates with Immunodominance in the Human Memory Repertoire. Journal of Immunology. 188, 2537-2544 (2012).
  18. Jenkins, M. K., Chu, H. H., McLachlan, J. B., Moon, J. J. On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands. Annu Rev Immunol. 28, 275-294 (2010).
  19. Matechak, E. O., Killeen, N., Hedrick, S. M., Fowlkes, B. J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity. 4, 337-347 (1996).
  20. Burchill, M. A. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity. 28, 112-121 (2008).
  21. Pepper, M. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nature Immunology. 11, 83-89 (2010).

Play Video

Cite This Article
Legoux, F. P., Moon, J. J. Peptide:MHC Tetramer-based Enrichment of Epitope-specific T cells. J. Vis. Exp. (68), e4420, doi:10.3791/4420 (2012).

View Video