Summary

マウス骨格筋におけるDNA損傷の検出と分析<em>その場で</em> TUNEL法を用いた

Published: December 16, 2014
doi:

Summary

This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method for semi-automated analysis of TUNEL labeling.

Abstract

Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.

Introduction

ターミナルデオキシヌクレオチジルトランスフェラーゼ(TdT)dUTPニック末端標識(TUNEL)は12,23を破る二本鎖及び一本鎖DNAの3 '末端へのdUTPを付加するTdT酵素を使用するプロセスである。アポトーシスとDNA損傷を検出するためのTUNEL法は、最初にGavrieli によって20年以上前に報告された。1,12,24。それ以来異なる組織標本7,23,27,40で評価し、最適化されています。 TUNELは、虚血誘導性のニューロン6,14,29及び心筋43,44の細胞死、興奮毒性神経細胞死30,31、および関節炎の治療39においてバイオマーカーとしての研究に使用されている。また、様々なヒト癌において予後因子および腫瘍細胞マーカーとして使用されてきた2,3,15,32,37,38,42。

代替的な方法は、DNA損傷および細胞死の検出のために存在するが、それらは技術的な課題と警告している。サザンブロッティングはquantifするために使用することができるYのDNA全組織溶解物における損傷7,9-11が、この方法は、細胞のレベルの分解能を提供し、定量化が困難であるされません。コメットアッセイは、細胞4,20,28,36から保存核を抽出する必要が別の細胞に基づいた方法である。コメットアッセイは、培養された単離された細胞にうまく機能するが、それは、骨格筋組織8,21から無傷の核を調製するためにはるかに困難である。サザンブロットと同様に、コメットアッセイは、全筋肉組織ホモジネートからの細胞型特異的な情報を提供しない。 TUNEL法の別の方法としては、一本鎖DNA 25,33,41に対して、又はDNA損傷応答及び細胞死経路( 例えば、p53は、H2AX、カスパーゼ)13,17,22,40に関与するタンパク質に対する抗体を用いた免疫組織化学である。このような抗体ベースの方法は、高いシグナル対バックグラウンド比を得るために、抗体の完全な特徴付けおよび優​​れた抗体の特異性を必要とする。場合であってもスペックIFIC抗体は、抗原回復手順34,35を介して標的タンパク質の変性を必要とすることが、存在する。私たちはここで議論したように、容認できないほど高い自己蛍光における筋肉組織結果の抗原検索。代替方法とは異なり、TUNEL、高い信号及び低いバックグラウンドを有するDNA損傷の検出、単純陽性および陰性対照を用いて試験することができる優れた特異性、抗原回復、および細胞レベルの分解能を必要としない、良好な組織浸透を達成する。代替の方法は、通常、一晩のインキュベーションを必要とするのに対し、また、TUNEL法は、完了するのに約4時間かかります。

我々は謝-Liおよび同僚16によって生成された脊髄性筋萎縮症(SMA)10のマウスモデルにおける骨格筋細胞死を研究する。筋肉におけるアポトーシス細胞を定量するために、我々は、異なるskeleにわたってロバスト働く組織調製、染色、および定量化の方法を開発したマウスでの異なる発生時点での境筋肉群。我々は、市販のTUNEL標識キットと市販の画像解析ソフトウェアを使用。また、正常に脊髄10で免疫蛍光染色と組み合わせて、TUNELアッセイを使用している。

ここに記載される方法は、骨格筋における組織病理学、疾患のメカニズム、老化のメカニズム、および発生(前および出生後)、細胞死を評価する研究者のために有用である。 TUNEL法は、細胞のサブセットのみが、影響を受けた細胞レベルの分解能が必要であるモデル系におけるDNA損傷および修復および細胞死の研究のために特に有用である。

このビデオでは、解剖、組織の処理、切片、およびマウス骨格筋の蛍光ベースのTUNEL標識を説明しています。また、半自動TUNEL信号定量する方法を記載する。

Protocol

注:このプロトコルで説明されているすべての動物手順は、健康26の国立衛生研究所の実験動物の管理と使用に関する指針の推奨に従って行った。プロトコル(MO13M391)はジョンズホプキンス大学動物実験委員会によって承認された。 1.新生児マウスの犠牲、解剖、および固定 CO 2吸入によって新生児マウスを生け贄に捧げる。 すぐ?…

Representative Results

成功した染色、TUNEL陽性シグナルは、強度しきい値を設定することにより、自己蛍光から分離するのに十分な明るすべきである。低倍率でのTUNEL陽性のオブジェクトは、骨格筋( 図1A)で明るい不規則な断片として表示されることがあります。関与する細胞死のタイプはアポトーシス( 図1B)である場合は、より高い倍率で、古典的なアポトーシス形態といくつかのTU…

Discussion

マウス骨格筋におけるDNA損傷に関連するアポトーシスを検出し、定量的に分析する方法について説明する。手順は、組織採取、TUNEL染色、デジタル画像取得および画像解析を含む。一般的な組織学的部品やツールが必要であり、特別な商業TUNELキットが必要です。必要とされる必須の大きな装置品目はクライオスタット、デジタル画像機能を有する落射蛍光顕微鏡および画像解析のためのコン…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH-NINDS grant RO1-NS065895 and NIH-NINDS grant 5-F31-NS076250-02.

We thank JHU SOM Microscope Facility for the use of the cryostat.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
4% Paraformaldehyde in phosphate buffered saline Electron Microscopy Sciences 19202 For procedures described here, 4% solution was prepared fresh from powder. Paraformaldehyde from any supplier may be used. Prepared formaldehyde solution should be stored at 4 °C and should not be used after its expiration date (up to several months). Paraformaldehyde is a carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling paraformaldehyde.
Sucrose Sigma S0389 Used for cryoprotecting tissue before freezing. Sucrose from any supplier may be used.
O.C.T. compound  Tissue-Tek 4583 Embedding medium for cryosectioning.
Cryostat Leica CM 3050S A Leica CM3050S cryostat was used for the preparations described here. Any cryostat capable of cutting 10 μm sections may be used.
Glass slides, 25 x 75 x 1 mm Fisher 12-552-3 Slides from any supplier may be used.
Gelatin Sigma G-9391 Gelatin is used to promote tissue section adhesion to glass slides. To coat glass slides with gelatin, dissolve 2.75 g gelatin and 0.275 g chrome alum in 500 mL distilled water, warm to 60 °C, dip slides for several seconds, and let dry. Gelatin from any supplier may be used. Alternatively, gelatin-precoated slides may be purchased.
Chromium(III) potassium sulfate dodecahydrate (chrome alum) Sigma 243361 Chrome alum is added to gelatin solution to promote tissue adhesion on glass slides. It is a possible carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling chrome alum.
Vectabond tissue adhesion reagent Vector Labs SP-1800 Optional substrate for better tissue adhesion to glass slides; gellatin-coated slides may be used instead.
Tween20 Sigma P9416 A detergent used to permeabilize tissue. Tween20 from any supplier may be used.
Triton X100 Sigma T8787 A detergent used to permeabilize tissue. Triton X100 from any supplier may be used.
TACS 2 TdT fluorescein in situ apoptosis detection kit Trevigen 4812-30-K Commercial kit for fluorescence-based TUNEL labeling.
DNase/nuclease Trevigen 4812-30-K (included with kit)
DNase/nuclease buffer Trevigen 4812-30-K (included with kit)
10x phosphate buffered saline (PBS), pH 7.4 Amresco 780 Make 1x PBS for washes and dilutions. PBS from any supplier may be used.
DNase-free water Quality Biologicals 351-029-131 Water from any supplier may be used.
Hoechst 33258 Sigma 94403 Nuclear dye. Any blue fluorescent nuclear dye may be used. As a DNA-binding dye, Hoechst is a suspected carcinogen and should be handled with protective equipment to minimize skin contact.
Parafilm M multiple 807 Any other hydrophobic film or cover slip may be used. Available from multiple suppliers. 
Fluorescent microscope with digital camera  –  – Any fluorescent microscope capable of digitally capturing red, green, and blue fluorescence in separate channels may be used.
Vectashield antifade media Vector Labs H-1000 Antifade media from any supplier may be used.
glass coverslips, No.1 thickness Brain Research Labs 2222-1 Cover slips from any supplier may be used. The smallest size of 22×22 mm is sufficient for neonatal mouse leg sections.
Nail polish Ted Pella 114-8 Used to seal coverslips. Nail polish from any supplier (including regular retailers) may be used. Avoid using nail polish with color or additives that may reflect light during fluorescent imaging. 

References

  1. Ansari, B., Coates, P. J., Greenstein, B. D., Hall, P. A. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. 170 (1), 1-8 (1993).
  2. Ben-Izhak, O., Laster, Z., Akrish, S., Cohen, G., Nagler, R. M. TUNEL as a tumor marker of tongue cancer. Anticancer Res. 28 (5B), 2981-2986 (2008).
  3. Colecchia, M., et al. Detection of apoptosis by the TUNEL technique in clinically localised prostatic cancer before and after combined endocrine therapy. 50 (5), 384-388 (1997).
  4. Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26 (3), 249-261 (2004).
  5. Delaurier, A., et al. The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning. 8, 83 (2008).
  6. Torres, C., Munell, F., Ferrer, I., Reventos, J., Macaya, A. Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci. Lett. 230 (1), 1-4 (1997).
  7. Didenko, V. V. . In Situ Detection of DNA Damage : Methods and Protocols. , 978-970 (2002).
  8. Edelman, J. C., Edelman, P. M., Kniggee, K. M., Schwartz, I. L. Isolation of skeletal muscle nuclei. J. Cell Biol. 27 (2), 365-378 (1965).
  9. Facchinetti, A., Tessarollo, L., Mazzocchi, M., Kingston, R., Collavo, D., Biasi, G. An improved method for the detection of DNA fragmentation. J. Immunol. Methods. 136 (1), 125-131 (1991).
  10. Fayzullina, S., Martin, L. J. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS.One. 9 (3), e93329 (2014).
  11. Ferrer, I., et al. Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neurosci. Lett. 182 (1), 77-79 (1994).
  12. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119 (3), 493-501 (1992).
  13. Gown, A. M., Willingham, M. C. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J. Histochem. Cytochem. 50 (4), 449-454 (2002).
  14. Hara, A., et al. Neuronal apoptosis studied by a sequential TUNEL technique: a method for tract-tracing. Brain Res. Brain Res. Protoc. 4 (2), 140-146 (1999).
  15. Harn, H. J., et al. Apoptosis occurs more frequently in intraductal carcinoma than in infiltrating duct carcinoma of human breast cancer and correlates with altered p53 expression: detected by terminal-deoxynucleotidyl-transferase-mediated dUTP-FITC nick end labelling (TUNEL). Histopathology. 31 (6), 534-539 (1997).
  16. Hsieh-Li, H. M., et al. A mouse model for spinal muscular atrophy. Nat. Genet. 24 (1), 66-70 (2000).
  17. Huerta, S., Goulet, E. J., Huerta-Yepez, S., Livingston, E. H. Screening and detection of apoptosis. J. Surg. Res. 139 (1), 143-156 (2007).
  18. Iwaki, T., Yamashita, H., Hayakawa, T. A color atlas of sectional anatomy of the mouse. 1, (2001).
  19. Kaufman, M. H. . The atlas of mouse development. , (1992).
  20. Koppen, G., Angelis, K. J. Repair of X-ray induced DNA damage measured by the comet assay in roots of Vicia faba. Environ. Mol. Mutagen. 32 (2), 281-285 (1998).
  21. Kuehl, L. Isolation of skeletal muscle nuclei. Methods Cell Biol. 15, 79-88 (1977).
  22. Kuo, L. J., Yang, L. X. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 22 (3), 305-309 (2008).
  23. Labat-Moleur, F., et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46 (3), 327-334 (1998).
  24. Modak, S. P., Bollum, F. J. Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75 (2), 307-313 (1972).
  25. Naruse, I., Keino, H., Kawarada, Y. Antibody against single-stranded DNA detects both programmed cell death and drug-induced apoptosis. Histochemistry. 101 (1), 73-78 (1994).
  26. . National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. , (2011).
  27. Negoescu, A., et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations). J. Histochem. Cytochem. 44 (9), 959-968 (1996).
  28. Ostling, O., Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123 (1), 291-298 (1984).
  29. Phanithi, P. B., Yoshida, Y., Santana, A., Su, M., Kawamura, S., Yasui, N. Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology. 20 (4), 273-282 (2000).
  30. Portera-Cailliau, C., Price, D. L., Martin, L. J. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J. Comp Neurol. 378 (1), 70-87 (1997).
  31. Portera-Cailliau, C., Price, D. L., Martin, L. J. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp Neurol. 378 (1), 88-104 (1997).
  32. Ravi, D., Ramadas, K., Mathew, B. S., Nalinakumari, K. R., Nair, M. K., Pillai, M. R. De novo programmed cell death in oral cancer. Histopathology. 34 (3), 241-249 (1999).
  33. Sakaki, T., Kohmura, E., Kishiguchi, T., Yuguchi, T., Yamashita, T., Hayakawa, T. Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir.(Wien). 139 (5), 469-474 (1997).
  34. Shi, S. R., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry: past, present, and future. J. Histochem. Cytochem. 45 (3), 327-343 (1997).
  35. Shi, S. R., Imam, S. A., Young, L., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry under the influence of pH using monoclonal antibodies. J. Histochem. Cytochem. 43 (2), 193-201 (1995).
  36. Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 (1), 184-191 (1988).
  37. Sirvent, J. J., Aguilar, M. C., Olona, M., Pelegri, A., Blazquez, S., Gutierrez, C. Prognostic value of apoptosis in breast cancer pT1-pT2). A TUNEL, p53, bcl-2, bag-1 and Bax immunohistochemical study. Histol.Histopathol. 19 (3), 759-770 (2004).
  38. Skyrlas, A., Hantschke, M., Passa, V., Gaitanis, G., Malamou-Mitsi, V., Bassukas, I. D. Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp. Dermatol. 20 (8), 674-676 (2011).
  39. Smith, M. D., Weedon, H., Papangelis, V., Walker, J., Roberts-Thomson, P. J., Ahern, M. J. Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology.(Oxford). 49 (5), 862-875 (2010).
  40. Stadelmann, C., Lassmann, H. Detection of apoptosis in tissue sections). Cell Tissue Res. 301 (1), 19-31 (2000).
  41. Schans, G. P., van Loon, A. A., Groenendijk, R. H., Baan, R. A. Detection of DNA damage in cells exposed to ionizing radiation by use of anti-single-stranded DNA monoclonal antibody. Int. J. Radiat. Biol. 55 (5), 747-760 (1989).
  42. Watanabe, I., et al. Detection of apoptotic cells in human colorectal cancer by two different in situ methods: antibody against single-stranded DNA and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) methods. Jpn. J. Cancer Res. 90 (2), 188-193 (1999).
  43. Watanabe, T., et al. Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem. Biophys. Res. Commun. 333 (2), 562-567 (2005).
  44. Yaoita, H., Ogawa, K., Maehara, K., Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 97 (3), 276-281 (1998).

Play Video

Cite This Article
Fayzullina, S., Martin, L. J. Detection and Analysis of DNA Damage in Mouse Skeletal Muscle In Situ Using the TUNEL Method. J. Vis. Exp. (94), e52211, doi:10.3791/52211 (2014).

View Video