Summary

كشف وتحليل الحمض النووي من التلف في العضلات الهيكلية ماوس<em> في الموقع</em> استخدام أسلوب TUNEL

Published: December 16, 2014
doi:

Summary

This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method for semi-automated analysis of TUNEL labeling.

Abstract

Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.

Introduction

محطة deoxynucleotidyl ترانسفيراز (TDT) dUTP وضع العلامات نهاية نيك (TUNEL) هو عملية استخدام انزيم TDT إرفاق dUTP إلى 3 'ينتهي من مزدوجة ومفردة الذين تقطعت بهم السبل DNA يكسر 12،23. وذكرت وطريقة TUNEL للكشف عن الخلايا والحمض النووي الضرر لأول مرة منذ أكثر من 20 عاما من قبل Gavrieli وآخرون. 1،12،24. ومنذ ذلك الحين تم تقييمها والأمثل في الأعمال التحضيرية الأنسجة المختلفة 7،23،27،40. وقد استخدم TUNEL لدراسة موت الخلايا الناجم عن نقص التروية من الخلايا العصبية 6،14،29 والعضلية 43،44، excitotoxic المواد موت الخلايا العصبية 30،31، وكما العلامات البيولوجية في علاج التهاب المفاصل 39. كما تم استخدامه كعامل النذير وعلامة الخلايا السرطانية في مختلف السرطانات البشرية 2،3،15،32،37،38،42.

وتوجد طرق بديلة لالحمض النووي من التلف والكشف عن موت الخلايا، ولكن لديهم التحديات التقنية والمحاذير. النشاف الجنوبي يمكن أن تستخدم لquantifذ الحمض النووي من التلف في الأنسجة لست] كاملة 7،9-11، ولكن هذه الطريقة لا توفر الدقة المستوى الخلوي ويصعب قياسها كميا. الفحص المذنب هو طريقة خلية القاعدة البديل الذي يتطلب استخراج نواة من خلايا الحفاظ 4،20،28،36. على الرغم من أن الفحص المذنب يعمل بشكل جيد على خلايا معزولة مثقف، هو أكثر صعوبة لإعداد نواة سليمة من أنسجة العضلات والهيكل العظمي 8،21. كما هو الحال مع اللطخة الجنوبية، ومقايسة المذنب لا يقدم معلومات الخلية من نوع محددة من كله جناسة الأنسجة العضلية. وثمة بديل آخر لطريقة TUNEL هو المناعية باستخدام أجسام مضادة ضد احد الذين تقطعت بهم السبل DNA 25،33،41 أو ضد البروتينات التي تشارك في الحمض النووي ردا الضرر وموت الخلايا مسارات (مثل البروتين p53، H2AX، وcaspases) 13،17،22،40. مثل هذه الأساليب القائمة على الأجسام المضادة تتطلب توصيف دقيق للالأجسام المضادة والأجسام المضادة خصوصية ممتازة لانتاج نسبة عالية الإشارة إلى الخلفية. حتى عندما المواصفاتالأجسام المضادة IFIC موجودة، وأنها قد تتطلب تمسخ من البروتين الهدف من خلال إجراءات استرجاع مستضد 34،35. ونحن نناقش هنا، استرجاع مستضد في نتائج الأنسجة العضلية في تألق ذاتي عالية بشكل غير مقبول. وخلافا للطرق البديلة، TUNEL يحقق DNA الضرر الكشف مع إشارة عالية وخلفية منخفضة، والنوعية الممتازة التي يمكن اختبارها مع ضوابط بسيطة الإيجابية والسلبية، اختراق الأنسجة الجيدة التي لا تتطلب استرجاع مستضد، والدقة المستوى الخلوي. وبالإضافة إلى ذلك، فإن الطريقة TUNEL يستغرق حوالي 4 ساعات لإكمال، في حين أن الطرق البديلة تتطلب عادة حضانات بين عشية وضحاها.

نقوم بدراسة الهيكل العظمي موت الخلايا العضلية في نموذج الفأر من ضمور العضلات الشوكي (SMA) 10 التي تم إنشاؤها بواسطة هسيه لى وزملاؤه 16. لتحديد الخلايا أفكارك في العضلات، قمنا بتطوير طريقة التحضير الأنسجة، وتلطيخ، والكميات التي تعمل بقوة عبر skele مختلفةمجموعات العضلات التل على مختلف النقاط الزمنية التنموية في الفئران. ونحن نستخدم المتاحة تجاريا عدة TUNEL وضع العلامات ومتاحة تجاريا البرمجيات تحليل الصور. وعلينا أيضا أن تستخدم بنجاح الفحص TUNEL في تركيبة مع تلوين مناعي في الحبل الشوكي 10.

الأساليب المذكورة هنا هي مفيدة للمحققين الذين يريدون لتقييم أمراض الأنسجة، وآليات المرض، وآليات الشيخوخة، والتنموية (قبل وبعد الولادة) موت الخلايا في العضلات والهيكل العظمي. تقنية TUNEL مفيدة بشكل خاص للدراسات الحمض النووي من التلف وإصلاح وموت الخلايا في نظم نموذج حيث لا يوجد سوى مجموعة فرعية من الخلايا هي قرار مستوى المتضررين والخلوية ضروري.

هذا الفيديو يصف تشريح، معالجة الأنسجة، باجتزاء، ووضع العلامات TUNEL القائم على مضان من الماوس العضلات والهيكل العظمي. ويصف التقرير أيضا وسيلة لشبه الآلي إشارة الكميات TUNEL.

Protocol

ملاحظة: تم تنفيذ جميع الإجراءات الحيوانية وصفها في هذا البروتوكول وفقا للتوصيات الواردة في دليل لرعاية واستخدام الحيوانات المختبرية من المعاهد الوطنية للصحة 26. وتمت الموافقة على البروتوكول (MO13M391) من قبل لجنة جامعة رعاية الحيوان واستخدام جونز هوبكنز. <p c…

Representative Results

مع تلطيخ ناجحة، يجب أن تكون-TUNEL إيجابي إشارة مشرق بما فيه الكفاية لعزل من تألق ذاتي من خلال وضع عتبات كثافة. الأجسام TUNEL إيجابية في التكبير المنخفض قد تظهر أجزاء غير منتظمة كما مشرق في العضلات والهيكل العظمي (الشكل 1A). ومع ذلك، في أعلى التكبير، وبعض الكائنات TUNE…

Discussion

وهناك طريقة لكشف وتحليل كمي DNA المرتبط ضرر الخلايا في الماوس العضلات والهيكل العظمي وصفها. ويشمل الإجراء الحصاد الأنسجة، TUNEL تلطيخ، واقتناء الصور الرقمية، وتحليل الصور. هناك حاجة إلى إمدادات وأدوات النسيجية المشتركة، وTUNEL عدة التجارية الخاصة أمر ضروري. بنود المعدات …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH-NINDS grant RO1-NS065895 and NIH-NINDS grant 5-F31-NS076250-02.

We thank JHU SOM Microscope Facility for the use of the cryostat.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
4% Paraformaldehyde in phosphate buffered saline Electron Microscopy Sciences 19202 For procedures described here, 4% solution was prepared fresh from powder. Paraformaldehyde from any supplier may be used. Prepared formaldehyde solution should be stored at 4 °C and should not be used after its expiration date (up to several months). Paraformaldehyde is a carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling paraformaldehyde.
Sucrose Sigma S0389 Used for cryoprotecting tissue before freezing. Sucrose from any supplier may be used.
O.C.T. compound  Tissue-Tek 4583 Embedding medium for cryosectioning.
Cryostat Leica CM 3050S A Leica CM3050S cryostat was used for the preparations described here. Any cryostat capable of cutting 10 μm sections may be used.
Glass slides, 25 x 75 x 1 mm Fisher 12-552-3 Slides from any supplier may be used.
Gelatin Sigma G-9391 Gelatin is used to promote tissue section adhesion to glass slides. To coat glass slides with gelatin, dissolve 2.75 g gelatin and 0.275 g chrome alum in 500 mL distilled water, warm to 60 °C, dip slides for several seconds, and let dry. Gelatin from any supplier may be used. Alternatively, gelatin-precoated slides may be purchased.
Chromium(III) potassium sulfate dodecahydrate (chrome alum) Sigma 243361 Chrome alum is added to gelatin solution to promote tissue adhesion on glass slides. It is a possible carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling chrome alum.
Vectabond tissue adhesion reagent Vector Labs SP-1800 Optional substrate for better tissue adhesion to glass slides; gellatin-coated slides may be used instead.
Tween20 Sigma P9416 A detergent used to permeabilize tissue. Tween20 from any supplier may be used.
Triton X100 Sigma T8787 A detergent used to permeabilize tissue. Triton X100 from any supplier may be used.
TACS 2 TdT fluorescein in situ apoptosis detection kit Trevigen 4812-30-K Commercial kit for fluorescence-based TUNEL labeling.
DNase/nuclease Trevigen 4812-30-K (included with kit)
DNase/nuclease buffer Trevigen 4812-30-K (included with kit)
10x phosphate buffered saline (PBS), pH 7.4 Amresco 780 Make 1x PBS for washes and dilutions. PBS from any supplier may be used.
DNase-free water Quality Biologicals 351-029-131 Water from any supplier may be used.
Hoechst 33258 Sigma 94403 Nuclear dye. Any blue fluorescent nuclear dye may be used. As a DNA-binding dye, Hoechst is a suspected carcinogen and should be handled with protective equipment to minimize skin contact.
Parafilm M multiple 807 Any other hydrophobic film or cover slip may be used. Available from multiple suppliers. 
Fluorescent microscope with digital camera  –  – Any fluorescent microscope capable of digitally capturing red, green, and blue fluorescence in separate channels may be used.
Vectashield antifade media Vector Labs H-1000 Antifade media from any supplier may be used.
glass coverslips, No.1 thickness Brain Research Labs 2222-1 Cover slips from any supplier may be used. The smallest size of 22×22 mm is sufficient for neonatal mouse leg sections.
Nail polish Ted Pella 114-8 Used to seal coverslips. Nail polish from any supplier (including regular retailers) may be used. Avoid using nail polish with color or additives that may reflect light during fluorescent imaging. 

References

  1. Ansari, B., Coates, P. J., Greenstein, B. D., Hall, P. A. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. 170 (1), 1-8 (1993).
  2. Ben-Izhak, O., Laster, Z., Akrish, S., Cohen, G., Nagler, R. M. TUNEL as a tumor marker of tongue cancer. Anticancer Res. 28 (5B), 2981-2986 (2008).
  3. Colecchia, M., et al. Detection of apoptosis by the TUNEL technique in clinically localised prostatic cancer before and after combined endocrine therapy. 50 (5), 384-388 (1997).
  4. Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26 (3), 249-261 (2004).
  5. Delaurier, A., et al. The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning. 8, 83 (2008).
  6. Torres, C., Munell, F., Ferrer, I., Reventos, J., Macaya, A. Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci. Lett. 230 (1), 1-4 (1997).
  7. Didenko, V. V. . In Situ Detection of DNA Damage : Methods and Protocols. , 978-970 (2002).
  8. Edelman, J. C., Edelman, P. M., Kniggee, K. M., Schwartz, I. L. Isolation of skeletal muscle nuclei. J. Cell Biol. 27 (2), 365-378 (1965).
  9. Facchinetti, A., Tessarollo, L., Mazzocchi, M., Kingston, R., Collavo, D., Biasi, G. An improved method for the detection of DNA fragmentation. J. Immunol. Methods. 136 (1), 125-131 (1991).
  10. Fayzullina, S., Martin, L. J. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS.One. 9 (3), e93329 (2014).
  11. Ferrer, I., et al. Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neurosci. Lett. 182 (1), 77-79 (1994).
  12. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119 (3), 493-501 (1992).
  13. Gown, A. M., Willingham, M. C. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J. Histochem. Cytochem. 50 (4), 449-454 (2002).
  14. Hara, A., et al. Neuronal apoptosis studied by a sequential TUNEL technique: a method for tract-tracing. Brain Res. Brain Res. Protoc. 4 (2), 140-146 (1999).
  15. Harn, H. J., et al. Apoptosis occurs more frequently in intraductal carcinoma than in infiltrating duct carcinoma of human breast cancer and correlates with altered p53 expression: detected by terminal-deoxynucleotidyl-transferase-mediated dUTP-FITC nick end labelling (TUNEL). Histopathology. 31 (6), 534-539 (1997).
  16. Hsieh-Li, H. M., et al. A mouse model for spinal muscular atrophy. Nat. Genet. 24 (1), 66-70 (2000).
  17. Huerta, S., Goulet, E. J., Huerta-Yepez, S., Livingston, E. H. Screening and detection of apoptosis. J. Surg. Res. 139 (1), 143-156 (2007).
  18. Iwaki, T., Yamashita, H., Hayakawa, T. A color atlas of sectional anatomy of the mouse. 1, (2001).
  19. Kaufman, M. H. . The atlas of mouse development. , (1992).
  20. Koppen, G., Angelis, K. J. Repair of X-ray induced DNA damage measured by the comet assay in roots of Vicia faba. Environ. Mol. Mutagen. 32 (2), 281-285 (1998).
  21. Kuehl, L. Isolation of skeletal muscle nuclei. Methods Cell Biol. 15, 79-88 (1977).
  22. Kuo, L. J., Yang, L. X. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 22 (3), 305-309 (2008).
  23. Labat-Moleur, F., et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46 (3), 327-334 (1998).
  24. Modak, S. P., Bollum, F. J. Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75 (2), 307-313 (1972).
  25. Naruse, I., Keino, H., Kawarada, Y. Antibody against single-stranded DNA detects both programmed cell death and drug-induced apoptosis. Histochemistry. 101 (1), 73-78 (1994).
  26. . National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. , (2011).
  27. Negoescu, A., et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations). J. Histochem. Cytochem. 44 (9), 959-968 (1996).
  28. Ostling, O., Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123 (1), 291-298 (1984).
  29. Phanithi, P. B., Yoshida, Y., Santana, A., Su, M., Kawamura, S., Yasui, N. Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology. 20 (4), 273-282 (2000).
  30. Portera-Cailliau, C., Price, D. L., Martin, L. J. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J. Comp Neurol. 378 (1), 70-87 (1997).
  31. Portera-Cailliau, C., Price, D. L., Martin, L. J. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp Neurol. 378 (1), 88-104 (1997).
  32. Ravi, D., Ramadas, K., Mathew, B. S., Nalinakumari, K. R., Nair, M. K., Pillai, M. R. De novo programmed cell death in oral cancer. Histopathology. 34 (3), 241-249 (1999).
  33. Sakaki, T., Kohmura, E., Kishiguchi, T., Yuguchi, T., Yamashita, T., Hayakawa, T. Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir.(Wien). 139 (5), 469-474 (1997).
  34. Shi, S. R., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry: past, present, and future. J. Histochem. Cytochem. 45 (3), 327-343 (1997).
  35. Shi, S. R., Imam, S. A., Young, L., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry under the influence of pH using monoclonal antibodies. J. Histochem. Cytochem. 43 (2), 193-201 (1995).
  36. Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 (1), 184-191 (1988).
  37. Sirvent, J. J., Aguilar, M. C., Olona, M., Pelegri, A., Blazquez, S., Gutierrez, C. Prognostic value of apoptosis in breast cancer pT1-pT2). A TUNEL, p53, bcl-2, bag-1 and Bax immunohistochemical study. Histol.Histopathol. 19 (3), 759-770 (2004).
  38. Skyrlas, A., Hantschke, M., Passa, V., Gaitanis, G., Malamou-Mitsi, V., Bassukas, I. D. Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp. Dermatol. 20 (8), 674-676 (2011).
  39. Smith, M. D., Weedon, H., Papangelis, V., Walker, J., Roberts-Thomson, P. J., Ahern, M. J. Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology.(Oxford). 49 (5), 862-875 (2010).
  40. Stadelmann, C., Lassmann, H. Detection of apoptosis in tissue sections). Cell Tissue Res. 301 (1), 19-31 (2000).
  41. Schans, G. P., van Loon, A. A., Groenendijk, R. H., Baan, R. A. Detection of DNA damage in cells exposed to ionizing radiation by use of anti-single-stranded DNA monoclonal antibody. Int. J. Radiat. Biol. 55 (5), 747-760 (1989).
  42. Watanabe, I., et al. Detection of apoptotic cells in human colorectal cancer by two different in situ methods: antibody against single-stranded DNA and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) methods. Jpn. J. Cancer Res. 90 (2), 188-193 (1999).
  43. Watanabe, T., et al. Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem. Biophys. Res. Commun. 333 (2), 562-567 (2005).
  44. Yaoita, H., Ogawa, K., Maehara, K., Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 97 (3), 276-281 (1998).

Play Video

Cite This Article
Fayzullina, S., Martin, L. J. Detection and Analysis of DNA Damage in Mouse Skeletal Muscle In Situ Using the TUNEL Method. J. Vis. Exp. (94), e52211, doi:10.3791/52211 (2014).

View Video