Summary

3D-modellering af laterale ventrikler og Histologisk karakterisering af Periventricular Tissue i mennesker og mus

Published: May 19, 2015
doi:

Summary

Using MRI scans (human), 3D imaging software, and immunohistological analysis, we document changes to the brain’s lateral ventricles. Longitudinal 3D mapping of lateral ventricle volume changes and characterization of periventricular cellular changes that occur in the human brain due to aging or disease are then modeled in mice.

Abstract

The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.

Introduction

En ependymale cellemonolag linjer den ventrikulære system i hjernen leverer tovejs barriere og transport funktioner mellem den cerebrale spinalvæske (CSF) og interstitiel væske (ISF) 1-3. Disse funktioner bidrager til at holde hjernen giftstof-fri og i fysiologiske balance 2,3. Hos mennesker tab af dele af denne foring gennem skade eller sygdom synes ikke at resultere i regenerativ erstatning som fundet i andre epiteliale foringer; snarere tab af ependymale celle dækning ser ud til at resultere i periventricular astrogliose med en meshwork af astrocytter, der dækker regioner blottede af ependymceller på ventrikel overflade. Alvorlige konsekvenser til vigtige mekanismer CSF / ISF udveksling og clearance ville forudsiges at medføre tab af denne epitel lag 1,2,4-7.

Et fælles træk ved menneskets aldring forstørres laterale ventrikler (ventriculomegaly) og tilhørende periventricular ødem som observed med MRI og fluid-svækkede inversion recovery MRI (MRI / FLAIR) 8-14. At undersøge forholdet mellem ventriculomegaly og den cellulære organisering af ventriklen foring blev postmortem human MRI-sekvenser matchet med histologiske præparater af laterale ventrikel periventrikulær væv. I tilfælde af ventriculomegaly, havde betydelige områder af gliose erstattet ependymale celle dækning langs den laterale ventrikel væg. Når ventrikel ekspansion ikke blev registreret af MRI-baserede volumen analyse ependymale celle foring var intakt og gliose blev ikke påvist langs ventrikel foring 6. Denne kombinatorisk tilgang repræsenterer de første omfattende dokumentation beskriver ændringer i cellulær integritet af den laterale ventrikel foring hjælp wholemount præparater af dele eller hele laterale ventrikel væg og 3D modellering af ventrikel bind 6. Adskillige sygdomme (Alzheimers sygdom, skizofreni) og skader (traumatisk hjerneskade)vise ventriculomegaly som en tidlig neuropatologiske funktion. Blotlægning af områder af ependymale celle foring derved kunne forudsiges forstyrrer den normale ependymale cellefunktion og kompromittere den homeostatiske balance mellem CSF / ISF væske og opløst stof udveksling. Således vil en mere grundig undersøgelse af ændringer i det ventrikulære system, dens cellulære sammensætning, og konsekvensen for underliggende eller ligger hjernens strukturer i sidste ende begynder at afsløre mere om neuropatologi forbundet med ventrikel udvidelsen.

Manglen på multimodale billeddata, særlig langsgående datasekvenser sammen med begrænset adgang til tilsvarende histologiske vævsprøver gør analyse af menneskelige hjerne patologier vanskelig. Modellering fænotyper findes i menneskets aldring eller sygdom kan ofte opnås med musemodeller og dyremodeller blevet en af ​​vores bedste midler til at undersøge spørgsmål om human sygdom initiering og progression. Flere undersøgelser iraske unge mus har beskrevet cytoarchitecture af den laterale ventrikel vægge og den underliggende stamcelle niche 4,7-15. Disse undersøgelser er blevet udvidet til at omfatte 3D-modellering og cellulær analyse af ventrikel vægge gennem aldring 6,15. Hverken periventricular gliose eller ventriculomegaly observeres i ældre mus, snarere mus vise en forholdsvis robust subventicular zone (SVZ) stamcelle niche underliggende til en intakt ependymale celle foring 6,15. Således eksisterer slående artsspecifikke forskelle i både generel vedligeholdelse og integritet af den laterale ventrikel foring under processen med aldring 6,15. Derfor, for at bedst mulig brug mus at afhøre betingelser findes i mennesker, der skal karakteriseres og hensigtsmæssigt overvejes i enhver modellering paradigme forskelle mellem de to arter. Her præsenteres til vurdering langsgående ændringer i de laterale ventrikler og tilknyttet periventricular væv hos både mennesker og mOuse. Vores procedurer omfatter 3D rendering og volumetrisk af både mus og menneskelige ventrikler, og brug af immunhistokemisk analyse af hele mount præparater af periventricular væv til at karakterisere både cellulær organisation og struktur. Tilsammen disse procedurer giver et middel til at karakterisere ændringer i ventrikulære system og tilhørende periventricular væv.

Protocol

BEMÆRK: Animal procedurer blev godkendt af University of Connecticut IACUC og i overensstemmelse med NIH retningslinjer. Humant væv og dataanalyse og procedurer var i overensstemmelse med og godkendt af University of Connecticut IRB og i overensstemmelse med NIH retningslinjer. 1. Mouse: Analyse af Periventricular Cellular Integritet og 3D-modellering af den laterale ventrikel 1.1) Fremstilling af Mouse laterale ventrikel Wall hele underlag Forbered mus…

Representative Results

Contour sporing af musen laterale ventrikler baseret på immunofarvede 50 um koronale sektioner og 3D rekonstruktioner (figur 3) gør det muligt volumen data, der skal indsamles i forskellige eksperimentelle paradigmer bruger musen som model for sygdom eller skade. Afgørende for denne procedure er udelukkelsen af ​​regioner, hvor den laterale ventrikel vægge overholder hinanden. Ved subsegmenting regioner af hjertekamrene og udpegning en anden farve for hver region (figur 3C), kan…

Discussion

Vi præsenterer værktøjer og protokoller, der kan anvendes til at evaluere integriteten af ​​hjernens ventrikulære system i mus og i mennesker. Disse værktøjer kan imidlertid også anvendes på andre hjernestrukturer eller organsystemer, som undergår ændringer som følge af skade, sygdom eller under processen med aldring 14,21,22. Strategierne præsenteret drage fordel af software, der gør det muligt at tilpasningen af ​​tværsnits- og langsgående MRI-sekvenser til at generere 3D volumen repr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

An NINDS Grant NS05033 (JCC) supported this work. The University of Connecticut RAC, SURF and OUR programs provided additional support.

Materials

Name of the Materal/Equipment Company Catalog Number Comments/Description
Phosphate buffered saline (PBS) Life Technologies 21600-069
Paraformaldehyde (PFA) Electron Microscopy Sciences 19210 Use at 4% in PBS, 4 °C
Normal Horse Serum Life Technologies 16050 10% in PBS-TX (v/v)
Normal Goat Serum Life Technologies 16210 10% in PBS-TX (v/v)
Triton X-100 (TX) Sigma-Aldrich T8787 0.1% in PBS (v/v)
Vibratome Leica VT1000S
Fluorescence Microscope Zeiss Imager.M2
Camera Hamamatsu ORCA R2
Microscope Stage Controller Ludl Electronic Products MAC 6000
Stereology software MBF Bioscience Stereo Investigator 11
Stereology software ImageJ/NIH NIH freeware
3D Reconstruction software MBF Bioscience Neurolucida Explorer
Confocal Microscope Leica TCS SP2
MRI Software
Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall Segmentation and Volume
ITK-Snap http://www.itksnap.org/pmwiki/pmwiki.php Segmentation and Volume
Multi-image Analysis GUI (Mango) http://ric.uthscsa.edu/mango/ Longitudinal overlay
Whole Mount Equipment
22.5° microsurgical straight stab knife Fisher Scientific NC9854830
parafilm
wax bottom dissecting dish 
pins
fine forceps
aquapolymount
Dissecting Microscope Leica MZ95
Whole Mount Antibodies
mouse anti-b-catenin BD Bioschiences, San Jose, CA, USA 1:250
goat anti-GFAP Santa Cruz Biotechnology 1:250
rabbit anti-AQP4 (aquaporin-4)  Sigma-Aldrich 1:400
Coronal Antibodies
Anti-S100β antibody Sigma-Aldrich 1:500
4’,6-diamidino-2-phenylindole (DAPI) Life Technologies D-1306 10 µg/mL in PBS

References

  1. Del Bigio, M. R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55-73 (2010).
  2. Johanson, C., et al. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol. 39, 186-212 (2011).
  3. Roales-Bujan, R., et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathologica. 124, 531-546 (2012).
  4. Cserr, H. F. Physiology of the choroid plexus. Physiol Rev. 51, 273-311 (1971).
  5. Iliff, J. J., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine. 4, 147ra111 (2012).
  6. Shook, B. A., et al. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell. , (2013).
  7. Xie, L., et al. Sleep drives metabolite clearance from the adult brain. Science. 342, 373-377 (2013).
  8. Fazekas, F., et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 43, 1683-1689 (1993).
  9. Meier-Ruge, W., Ulrich, J., Bruhlmann, M., Meier, E. Age-related white matter atrophy in the human brain. Ann N Y Acad Sci. 673, 260-269 (1992).
  10. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., Davatzikos, C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 23, 3295-3301 (2003).
  11. Sener, R. N. Callosal changes in obstructive hydrocephalus: observations with FLAIR imaging, and diffusion MRI. Comput Med Imaging Graph. 26, 333-337 (2002).
  12. Sze, G., et al. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol. 147, 331-337 (1986).
  13. Tisell, M., et al. Shunt surgery in patients with hydrocephalus and white matter changes. Journal of Neurosurgery. 114, 1432-1438 (2011).
  14. Valdes Hernandez Mdel, C., et al. Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magn Reson Imaging. 30, 222-229 (2012).
  15. Shook, B. A., Manz, D. H., Peters, J. J., Kang, S., Conover, J. C. Spatiotemporal changes to the subventricular zone stem cell pool through aging. The Journal of Neuroscience : The Official Journal Of The Society For Neuroscience. 32, 6947-6956 (2012).
  16. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 3, 265-278 (2008).
  17. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp. , (2010).
  18. Luo, J., Daniels, S. B., Lennington, J. B., Notti, R. Q., Conover, J. C. The aging neurogenic subventricular zone. Aging Cell. 5, 139-152 (2006).
  19. Luo, J., Shook, B. A., Daniels, S. B., Conover, J. C. Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci. 28, 3804-3813 (2008).
  20. Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., Buckner, R. L. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci. 22, 2677-2684 (2010).
  21. Giorgio, A., De Stefano, N. Clinical use of brain volumetry. J Magn Reson Imaging. 37, 1-14 (2013).
  22. Caspers, S., et al. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS. Front Aging Neurosci. 6, 149 (2014).
  23. Keuken, M. C., et al. Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33, 4896-4900 (2013).
  24. Marti-Bonmati, L., Sopena, R., Bartumeus, P., Sopena, P. Multimodality imaging techniques. Contrast Media Mol Imaging. 5, 180-189 (2010).
  25. Bergmann, O., et al. The age of olfactory bulb neurons in humans. Neuron. 74, 634-639 (2012).
  26. Sanai, N., et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 478, 382-386 (2011).
  27. Wang, C., et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 21, 1534-1550 (2011).
  28. Carmen Gomez-Roldan, D. e. l., M, , et al. Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. The Journal of Comparative Neurology. 507, 1571-1587 (2008).

Play Video

Cite This Article
Acabchuk, R. L., Sun, Y., Wolferz, Jr., R., Eastman, M. B., Lennington, J. B., Shook, B. A., Wu, Q., Conover, J. C. 3D Modeling of the Lateral Ventricles and Histological Characterization of Periventricular Tissue in Humans and Mouse. J. Vis. Exp. (99), e52328, doi:10.3791/52328 (2015).

View Video