Summary

Deafferentated 마우스 망막의 플랫 마운트 준비에 별 모양 무 축삭 세포의 패치 클램프 녹음

Published: October 13, 2016
doi:

Summary

이 프로토콜은 평면 장착 준비에서 망막 신경 세포에 전체 셀 패치 클램프 녹음을 수행하는 방법을 보여줍니다.

Abstract

포유류의 망막 신경 세포는 여러 종류로 이루어지는 층상 티슈이다. 그 복잡한 시냅스 네트워크 내에서 처리하는 방법을 시각적 신호를 이해하기 위해, 전기 생리 녹음 자주 개별 뉴런 사이의 연결을 연구하는 데 사용됩니다. 우리는 마우스 망막의 GCL (신경절 세포 층) 및 INL 모두 유 전적으로 표시 뉴런의 패치 클램프 기록 (내부 핵 층)에 대한 평면 장착 준비를 최적화했다. 수직 및 횡 방향 모두 연결이 전 구성에 보존되어 있기 때문에 평면 마운트에 기록 INL 신경 세포를 연구하는 많은 측면 구성 요소와 망막 회로를 허용 조각을 통해 선호한다. 우리는 콜린성 스타 버스트 무 축삭 세포 (보안 인증)으로 망막의 거울 트너가 신경 세포의 반응을 비교하기 위해이 절차를 사용하고 있습니다.

Introduction

As an easily accessible part of the central nervous system, the retina has for decades been a useful model in neuroscience studies. Genetic marking of neurons has allowed detailed characterization of synaptic connections in the retina. With many methodologies available to examine function and morphology of retinal neurons, the patch clamp recording technique has been instrumental in our current understanding of vertically transmitted signals in the retina. These signals are originated from photon absorption in photoreceptors and sent to brain visual centers through spiking of retinal ganglion cells (RGCs). Despite a large body of knowledge accumulated thus far, neural diversity in vascularized mammalian retina remains unsolved and obstructs the full appreciation of retinal circuits that subserve normal vision. This is in part because most recordings were performed on retinal slices to trade lateral circuit integrity for access to more proximal retinal neurons1-3. To gain a comprehensive picture on how retina computes visual signals, it is thus desirable to record neurons in flat-mounts wherein lateral connections, large and small, may be better preserved.

When synaptic transmission from photoreceptors to bipolar cells is interrupted due to a defective metabotropic glutamate receptor 6 (mGluR6) signaling pathway in depolarizing bipolar cells4-6 or simply as the result of photoreceptor loss in degenerated retinas7-10, many RGCs exhibit oscillatory activities. These oscillations originate from multiple sources, however the one involving gap junction coupling between AII amacrine cells (AII-ACs) and depolarizing cone bipolar cells (DCBCs) has received the most attention and hence is best understood1,7,11. We have found another source, which persists under pharmacological blockade of the aforementioned AII-AC/DCBC network and drives oscillation of OFF-type SACs in RhoΔCTA and Nob mice with deafferentated retinas7,8,12. Here we detail our protocol of preparing retinal flat-mounts for INL neuron recording. This approach uses commercial mouse lines (Jax stock no. 006410 and 007905) to mark cholinergic retinal neurons by fluorescent protein (tdTomato) expression that is identifiable under a fluorescent microscope equipped with contrast enhancing optics. Some experimental results acquired through this approach have been previously reported4,5,7,13.

Protocol

윤리 승인 – 기관 동물 관리의 승인과 의학의 베일러 대학의위원회를 사용할 때 동물 주제와 관련된 절차, 규칙 및 연구 동물을위한 건강 지침의 국립 연구소의 규정에 따라 실시 하였다. 1. 외부 및 내부 솔루션 망막 박리시 이후 전기 생리 녹음에 외부 솔루션으로 포유 동물의 링거액을 사용합니다. 기록의 날 (칼슘)없이 10 배 원액에서 포유 동물의 링거액을 준비하고 carbogenation 15 ?…

Representative Results

ON-와 deafferentated 마우스 망막에서 OFF 형 주머니의 대표적인 녹음은 그림 1에 나타내었다. GCL 및 INL 모두 콜린성 세포를 안정적으로 tdTomato 형광에 의해 식별 및 DIC에서 전체 셀 패치 클램프 녹음 대상이 될 수 있습니다 (그림 1A) 그들의 막 전위 (상단 트레이스) 및 (하단 흔적, 그림 1B)를 구동 시냅스 전류의 진동을 공개합니다. 억제 및 ?…

Discussion

많은 실험실이 준비 15-18을 마운트 평평에서 GCL 신경 세포에서 기록했지만, 우리의 절차는 INL 뉴런에서 기록 할 수 있습니다. 우리는 이에 성공 일상적인 레코딩을위한 중요한 몇 가지 단계를 강조한다.

망막의 신선도 및 평탄성 기록 피펫을 관통 중요하다. 이 점에있어서, 상기 천공 된 니트로 셀룰로오스 막에 대한 망막의 확고한 부착 최우선 적시 재수 (단계 3.4-3.6)…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Joung Jang and Xin Guan for technical assistance. We thank Dr. Rory McQuiston of Virginia Commonwealth University for setting up our first patch clamp rig and advices on experimental procedures. We thank Dr. Samuel Wu for suggestions on voltage clamp recording. The work is supported by NIH grants EY013811, EY022228 and a vision core grant EY002520. C-KC is the Alice R. McPherson Retina Research Foundation Endowed Chair at the Baylor College of Medicine.

Materials

Fixed-stage fluorescent microscope with DIC Olympus BX51-WI
Micromanipulators Sutter MP-225
Patch clamp amplifier A-M System AM2400
AD converter National Instrument NI-USB-6221
Heater controller Warner Instrument TC-324B
Inline heater Warner Instrument SC-20
Peristaltic pump Rainin Dynamax
pipette puller Sutter Instrument P-1000
Glass tube with filament King Precision Glass Customized
Stimulator A.M.P.I. Master-8
Biocytin Sigma B4261
NaCl Sigma S6191
KCl Sigma P5405
NaHCO3 Fisher BP328-1
Na2HPO4 Sigma S0876
NaH2PO4 Sigma S5011
CaCl2 Sigma C5670
MgSO4 Sigma M1880
D-glucose Sigma G6152
K-gluconate Sigma G4500
ATP-Mg Sigma A9187
Li-GTP Sigma G5884
EGTA Sigma E0396
HEPES Sigma H4034
KOH Sigma P5958
Cs-methanesulfonate Sigma C1426
CsOH Sigma 232041
Syringer filter Nalgene 171
1 ml syring Rainin 17013002
10 ul pipette tip Genesee Scientific 24-130RL
Streptavidin-488 ThermoFisher S-11223
10X PBS Lonza 17-517Q

References

  1. Choi, H., et al. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol. 112 (6), 1491-1504 (2014).
  2. Gregg, R. G., et al. Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol. 98 (5), 3023-3033 (2007).
  3. Hellmer, C. B., Ichinose, T. Recording light-evoked postsynaptic responses in neurons in dark-adapted, mouse retinal slice preparations using patch clamp techniques. J Vis Exp. (96), (2015).
  4. Tu, H. Y., Bang, A., McQuiston, A. R., Chiao, C. C., Chen, C. K. Increased dendritic branching in direction selective retinal ganglion cells in nob1 mice. Invest Ophthalmol Vis Sci. 55 (13), (2014).
  5. Tu, H. Y., Chen, Y. J., Chiao, C. C., McQuiston, A. R., Chen, C. K. J. Rhythmic membrane potential fluctuations of cholinergic amacrine cells in mice lacking ERG b-waves. Invest Ophthalmol Vis Sci. 56 (7), (2015).
  6. Demas, J., et al. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron. 50 (2), 247-259 (2006).
  7. Tu, H. Y., Chen, Y. J., McQuiston, A. R., Chiao, C. C., Chen, C. K. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model. Front Cell Neurosci. 9, 513 (2015).
  8. Borowska, J., Trenholm, S., Awatramani, G. B. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci. 31 (13), 5000-5012 (2011).
  9. Margolis, D. J., Detwiler, P. B. Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol. , (2011).
  10. Stasheff, S. F. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol. 99 (3), 1408-1421 (2008).
  11. Trenholm, S., Awatramani, G. B. Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci. 9, 277 (2015).
  12. Trenholm, S., et al. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels. J Physiol. 590 (Pt 10), 2501-2517 (2012).
  13. Chen, C. K. J., et al. Cell-autonomous changes in displaced cholinergic amacrine cells lacking Gbeta5. Invest Ophthalmol Vis Sci. 56 (7), (2015).
  14. O’Brien, B. J., Isayama, T., Richardson, R., Berson, D. M. Intrinsic physiological properties of cat retinal ganglion cells. J Physiol. 538 (Pt 3), 787-802 (2002).
  15. Lee, S., et al. An Unconventional Glutamatergic Circuit in the Retina Formed by vGluT3 Amacrine Cells. Neuron. 84 (4), 708-715 (2014).
  16. Hoggarth, A., et al. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron. 86 (1), 276-291 (2015).
  17. Margolis, D. J., Gartland, A. J., Singer, J. H., Detwiler, P. B. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One. 9 (1), e86253 (2014).
  18. Schmidt, T. M., Kofuji, P. An isolated retinal preparation to record light response from genetically labeled retinal ganglion cells. J Vis Exp. (47), (2011).
  19. Ivanova, E., Yee, C. W., Sagdullaev, B. T. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front Cell Neurosci. 9, 390 (2015).
  20. Enoki, R., Koizumi, A. A method of horizontally sliced preparation of the retina. Methods Mol Biol. 935, 201-205 (2013).
  21. Akrouh, A., Kerschensteiner, D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol. 114 (4), 2431-2438 (2015).
  22. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 5 (7), 1347-1352 (2010).
check_url/54608?article_type=t

Play Video

Cite This Article
Tu, H., Hsu, C., Chen, Y., Chen, C. Patch Clamp Recording of Starburst Amacrine Cells in a Flat-mount Preparation of Deafferentated Mouse Retina. J. Vis. Exp. (116), e54608, doi:10.3791/54608 (2016).

View Video