Lo scopo del metodo qui presentato è quello di mostrare come i microarray di microambiente (MEMA) possono essere fabbricati e utilizzati per interrogare l’impatto di migliaia di semplici microambienti combinatori sul fenotipo delle cellule coltivate.
Comprendere l’impatto del microambiente sul fenotipo delle cellule è un problema difficile dovuto alla complessa miscela di fattori di crescita solubili e proteine associate a matrici nel microambiente in vivo. Inoltre, i reagenti prontamente disponibili per la modellazione di microambienti in vitro in genere utilizzano complesse miscele di proteine che sono incompletamente definite e soffrono di variabilità in lotti. La piattaforma microarray microambiente (MEMA) consente la valutazione di migliaia di semplici combinazioni di proteine microambientali per il loro impatto sui fenotipi cellulari in un unico test. I MEMA sono preparati in piastre di pozzo, che consente l’aggiunta di singoli ligandri per separare pozzi contenenti proteine a matrice extracellulare (ECM) suddivise. La combinazione del ligando solubile con ogni ECM stampato forma una combinazione unica. Un tipico test MEMA contiene più di 2.500 microambienti combinatori unici a cui le cellule sono esposte in un unico test. Come test case, la linea cellulare del cancro al seno MCF7 è stata placcata sulla piattaforma MEMA. L’analisi di questo analisi ha identificato i fattori che migliorano e inibiscono la crescita e la proliferazione di queste cellule. La piattaforma MEMA è altamente flessibile e può essere estesa per l’uso con altre questioni biologiche al di là della ricerca sul cancro.
La raccolta di linee cellulari tumorali su plastica in monostrati bidimensionali (2D) rimane uno dei principali cavalli di battaglia per i ricercatori oncologici. Tuttavia, il microambiente è sempre più riconosciuto per la sua capacità di impatto sui fenotipi cellulari. Nel cancro, il microambiente tumorale è noto per influenzare più comportamenti cellulari, tra cui la crescita, sopravvivenza, invasione, e la risposta alla terapia1,2. Le colture cellulari monostratore tradizionali in genere mancano di influenze microambientali, il che ha portato allo sviluppo di analisi tridimensionali più complesse (3D) per far crescere le cellule, compresi gli estratti di membrana seminterrato purificati disponibili in commercio. Tuttavia, queste matrici purificate sono in genere complicate da usare e soffrono di problemi tecnici come la variabilità del lotto3 e le composizioni complesse3. Di conseguenza, può essere difficile assegnare la funzione a specifiche proteine che possono avere un impatto sui fenotipi cellulari3.
Per affrontare queste limitazioni, abbiamo sviluppato la tecnologia microarray microambiente (MEMA), che riduce il microambiente fino a semplici combinazioni di matrice extracellulare (ECM) e proteine solubili del fattore di crescita4,5 . La piattaforma MEMA consente l’identificazione di fattori microambientali dominanti che influenzano il comportamento delle cellule. Utilizzando un formato di matrice, migliaia di combinazioni di fattori di microambiente possono essere tese in un unico esperimento. La MEMA qui descritta interroga 2.500 diverse condizioni di microambiente unico. Le proteine ECM stampate in lastre di pozzo formano pastiglie di crescita su cui le cellule possono essere coltivate. I ligandi solubili vengono aggiunti ai singoli pozzi, creando microambienti combinatori unici (ECM e ligando) su ogni punto diverso a cui sono esposte le cellule. Le cellule vengono coltivate per diversi giorni, quindi fisse, colorate e imagete per valutare i fenotipi cellulari come risultato dell’esposizione a queste specifiche combinazioni di microambienti. Poiché i microambienti sono semplici combinazioni, è semplice identificare le proteine che guidano i principali cambiamenti fenotipici nelle cellule. I MEMA sono stati utilizzati con successo per identificare i fattori che influenzano più fenotipi cellulari, compresi quelli che guidano le decisioni del destino cellulare e la risposta alla terapia4 ,5,6,7. Queste risposte possono essere convalidate in semplici esperimenti 2D e possono quindi essere valutate in condizioni che riassumono più pienamente la complessità del microambiente tumorale. La piattaforma MEMA è altamente adattabile a una varietà di tipi di cellule ed endpoint, a condizione che siano disponibili buoni biomarcatori fenotipici.
L’importanza della “dimensionalità” e del contesto è stata un fattore motivante nello sviluppo di sistemi di coltura in vitro come strumenti nella caratterizzazione delle cellule tumorali attraverso la loro interazione con il microambiente11,e la capacità di in vitro sistemi di coltura per imitare l’ambiente in vivo è una forza trainante dietro la ricerca di migliorare quei sistemi di coltura. I sistemi in vitro, tuttavia, rimangono strumenti significativi di ricerca sul cancro proprio a causa…
The authors have nothing to disclose.
Questo lavoro è stato supportato dalla sovvenzione HG008100 (J.W.G., L.M.H.) niH Common Fund Library of Network Cellular Signatures (LINCS).
Aushon 2470 | Aushon BioSystems | Arrayer robot system used in the protocol | |
Nikon HCA | Nikon | High Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope | |
BioTek Precision XS liquid Handler | BioTek | liquid handling robot used in the protocol | |
Trizma hydrochloride buffer solution | Sigma | T2069 | |
EDTA | Invitrogen | 15575-038 | |
Glycerol | Sigma | G5516 | |
Triton X100 | Sigma | T9284 | |
Tween 20 | Sigma | P7949 | |
Kolliphor P338 | BASF | 50424591 | |
384-well microarray plate, cylindrical well | Thermo Fisher | ab1055 | |
Nunc 8 well dish | Thermo Fisher | 267062 | |
Paraformaldehyde 16% solution | Electron Microscopy Science | 15710 | |
BSA | Fisher | BP-1600 | |
Sodium Azide | Sigma | S2002 | |
Cell Mask | Molecular Probes | H32713 | |
Click-iTEdU Alexa Fluor | Molecular Probes | C10357 | |
DAPI | Promo Kine | PK-CA70740043 | |
ALCAM | R & D Systems | 656-AL | ECM |
Cadherin-20 (CDH20) | R & D Systems | 5604-CA | ECM |
Cadherin-6 (CDH6) | R & D Systems | 2715-CA | ECM |
Cadherin-8 (CDH8) | R & D Systems | 188-C8 | ECM |
CD44 | R & D Systems | 3660-CD | ECM |
CEACAM6 | R & D Systems | 3934-CM | ECM |
Collagen I | Cultrex | 3442-050-01 | ECM |
Collagen Type II | Millipore | CC052 | ECM |
Collagen Type III | Millipore | CC054 | ECM |
Collagen Type IV | Sigma | C5533 | ECM |
Collagen Type V | Millipore | CC077 | ECM |
COL23A1 | R & D Systems | 4165-CL | ECM |
Desmoglein 2 | R & D Systems | 947-DM | ECM |
E-cadherin (CDH1) | R & D Systems | 648-EC | ECM |
ECM1 | R & D Systems | 3937-EC | ECM |
Fibronectin | R & D Systems | 1918-FN | ECM |
GAP43 | Abcam | ab114188 | ECM |
HyA-500K | R & D Systems | GLR002 | ECM |
HyA-50K | R & D Systems | GLR001 | ECM |
ICAM-1 | R & D Systems | 720-IC | ECM |
Laminin | Sigma | L6274 | ECM |
Laminin-5 | Abcam | ab42326 | ECM |
Lumican | R & D Systems | 2846-LU | ECM |
M-Cad (CDH15) | R & D Systems | 4096-MC | ECM |
Nidogen-1 | R & D Systems | 2570-ND | ECM |
Osteoadherin/OSAD | R & D Systems | 2884-AD | ECM |
Osteopontin (SPP) | R & D Systems | 1433-OP | ECM |
P-Cadherin (CDH3) | R & D Systems | 861-PC | ECM |
PECAM1 | R & D Systems | ADP6 | ECM |
Tenascin C | R & D Systems | 3358-TC | ECM |
VCAM1 | R & D Systems | ADP5 | ECM |
vitronectin | R & D Systems | 2308-VN | ECM |
Biglycan | R & D Systems | 2667-CM | ECM |
Decorin | R & D Systems | 143-DE | ECM |
Periostin | R & D Systems | 3548-F2 | ECM |
SPARC/osteonectin | R & D Systems | 941-SP | ECM |
Thrombospondin-1/2 | R & D Systems | 3074-TH | ECM |
Brevican | R & D Systems | 4009-BC | ECM |
Elastin | BioMatrix | 5052 | ECM |
Fibrillin | Lynn Sakai Lab OHSU | N/A | ECM |
ANGPT2 | RnD_Systems_Own | 623-AN-025 | Ligand |
IL1B | RnD_Systems_Own | 201-LB-005 | Ligand |
CXCL8 | RnD_Systems_Own | 208-IL-010 | Ligand |
IGF1 | RnD_Systems_Own | 291-G1-200 | Ligand |
TNFRSF11B | RnD_Systems_Own | 185-OS | Ligand |
BMP6 | RnD_Systems_Own | 507-BP-020 | Ligand |
FLT3LG | RnD_Systems_Own | 308-FK-005 | Ligand |
CXCL1 | RnD_Systems_Own | 275-GR-010 | Ligand |
DLL4 | RnD_Systems_Own | 1506-D4-050 | Ligand |
HGF | RnD_Systems_Own | 294-HGN-005 | Ligand |
Wnt5a | RnD_Systems_Own | 645-WN-010 | Ligand |
CTGF | Life_Technologies_Own | PHG0286 | Ligand |
LEP | RnD_Systems_Own | 398-LP-01M | Ligand |
FGF2 | Sigma_Aldrich_Own | SRP4037-50UG | Ligand |
FGF6 | RnD_Systems_Own | 238-F6 | Ligand |
IL7 | RnD_Systems_Own | 207-IL-005 | Ligand |
TGFB1 | RnD_Systems_Own | 246-LP-025 | Ligand |
PDGFB | RnD_Systems_Own | 220-BB-010 | Ligand |
WNT10A | Genemed_Own | 90009 | Ligand |
PTN | RnD_Systems_Own | 252-PL-050 | Ligand |
BMP3 | RnD_Systems_Own | 113-BP-100 | Ligand |
BMP4 | RnD_Systems_Own | 314-BP-010 | Ligand |
TNFSF11 | RnD_Systems_Own | 390-TN-010 | Ligand |
CSF2 | RnD_Systems_Own | 215-GM-010 | Ligand |
BMP5 | RnD_Systems_Own | 615-BMC-020 | Ligand |
DLL1 | RnD_Systems_Own | 1818-DL-050 | Ligand |
NRG1 | RnD_Systems_Own | 296-HR-050 | Ligand |
KNG1 | RnD_Systems_Own | 1569-PI-010 | Ligand |
GPNMB | RnD_Systems_Own | 2550-AC-050 | Ligand |
CXCL12 | RnD_Systems_Own | 350-NS-010 | Ligand |
IL15 | RnD_Systems_Own | 247-ILB-005 | Ligand |
TNF | RnD_Systems_Own | 210-TA-020 | Ligand |
IGFBP3 | RnD_Systems_Own | 675-B3-025 | Ligand |
WNT3A | RnD_Systems_Own | 5036-WNP-010 | Ligand |
PDGFAB | RnD_Systems_Own | 222-AB | Ligand |
AREG | RnD_Systems_Own | 262-AR-100 | Ligand |
JAG1 | RnD_Systems_Own | 1277-JG-050 | Ligand |
BMP7 | RnD_Systems_Own | 354-BP-010 | Ligand |
TGFB2 | RnD_Systems_Own | 302-B2-010 | Ligand |
VEGFA | RnD_Systems_Own | 293-VE-010 | Ligand |
IL6 | RnD_Systems_Own | 206-IL-010 | Ligand |
CXCL12 | RnD_Systems_Own | 351-FS-010 | Ligand |
NRG1 | RnD_Systems_Own | 378-SM | Ligand |
IGFBP2 | RnD_Systems_Own | 674-B2-025 | Ligand |
SHH | RnD_Systems_Own | 1314-SH-025 | Ligand |
FASLG | RnD_Systems_Own | 126-FL-010 | Ligand |