Summary

High-Throughput Assays of Critical Thermal Limits in Insects

Published: June 15, 2020
doi:

Summary

Thermal limits can predict the environments organisms tolerate, which is valuable information in the face of rapid climate change. Described here are high-throughput protocols to assess critical thermal minima and heat knockdown time in insects. Both protocols maximize the throughput and minimize the cost of the assays.

Abstract

Upper and lower thermal limits of plants and animals are important predictors of their performance, survival, and geographic distributions, and are essential for predicting responses to climate change. This work describes two high-throughput protocols for measuring insect thermal limits: one for assessing critical thermal minima (CTmin), and the other for assessing heat knock down time (KDT) in response to a static heat stressor. In the CTmin assay, individuals are placed in an acrylic-jacketed column, subjected to a decreasing temperature ramp, and counted as they fall from their perches using an infrared sensor. In the heat KDT assay, individuals are contained in a 96 well plate, placed in an incubator set to a stressful, hot temperature, and video recorded to determine the time at which they can no longer remain upright and move. These protocols offer advantages over commonly used techniques. Both assays are low cost and can be completed relatively quickly (~2 h). The CTmin assay reduces experimenter error and can measure a large number of individuals at once. The heat KDT protocol generates a video record of each assay and thus removes experimenter bias and the need to continuously monitor individuals in real time.

Introduction

Thermal limits of insects
Variation in environmental conditions, including temperature, is a major factor influencing the performance, fitness, survival, and geographic distribution of organisms1,2. Upper and lower thermal limits determine the theoretical range of environments an organism can tolerate, and, therefore, these limits are important predictors of plant and animal distributions, especially in the face of climate change3,4. Thus, protocols to accurately measure thermal limits are important tools for ecologists, physiologists, evolutionary biologists, and conservation biologists, among others.

As the most abundant and diverse terrestrial animals, insects are frequently used for measurements of thermal limits. Critical thermal maxima (CTmax) and critical thermal minima (CTmin) are commonly used to assess intra- and interspecific variation in thermal tolerance5,6,7. While CTmax and CTmin can be measured for multiple phenotypes, including growth, reproductive output, and behavior, they are most commonly applied to locomotor function5,6,7. Thus, CTmax (also called heat knockdown temperature) and CTmin are often defined as the high and low temperatures at which insects lose motor function and are unable to remain upright5,6,7,8,9,10,11. CTmin coincides with the onset of chill coma, a reversible paralysis brought on by cold temperatures6. While paralysis at the thermal limits is often reversible, continued exposure to these temperatures leads to ecological death5.

Common methods for measuring thermal limits
A variety of apparatuses have been used to measure thermal limits (summarized in Sinclair et al.)6. Briefly, insects are heated or cooled in incubators12,13, containers submerged in fluid baths11,14,15,16, aluminum blocks10,17, or jacketed containers18, and monitored until locomotion ceases. To monitor insects during the assay, the most common method is direct observation, in which individuals are continuously monitored in real time or retrospectively with recorded video6,9,10,11,15,17. While direct observation methods have minimal equipment requirements, they are labor-intensive and limit throughput. Alternatively, insects can be observed indirectly by collecting individuals at discrete times as they fall from perches6,19,20,21 or using activity monitors13.

Indirect methods for measuring thermal limits are generally higher-throughput and potentially less error prone than direct observation methods. The most common method for indirect monitoring uses a jacketed temperature-controlled column6,8,19,20,21. Insects are placed inside a column with perches, and the temperature of the inner chamber is controlled by pumping fluid from a temperature-controlled fluid bath through the jacketed lining of the column. Individuals that reach their thermal limit fall from their perch and are collected at discrete temperatures or time intervals. While this method works well for CTmin, it has been found unsuitable for CTmax, because flies voluntarily walk out of the bottom of the column when the temperature increases. The new method described here circumvents this issue by individually containing flies during automated measurements.

In addition to the method of observation, two types of temperature regimes are commonly used to assess upper thermal limits. Dynamic assays consist of gradually increasing temperature until motor function is lost; that temperature is the dynamic CTmax7,8,9,13. In contrast, static assays consist of a constant stressful temperature until motor function is lost; that time point is the heat knockdown time (heat KDT), also called the static CTmax (sCTmax) in a recent paper by Jørgensen et al.7,8,9,16,22. Although CTmax and heat knockdown assays (heat KD assays) produce metrics with different units, mathematical modeling of the two traits indicates they give comparable information on heat tolerance and are both ecologically relevant8,9. Dynamic assays yield a temperature that can be compared to environmental conditions, and they are preferable when there are large differences in heat tolerance, such as comparisons between species with widely different thermal niches. However, due to the high Q10 for heat injury accumulation, a static assay may be preferable for detecting small effect sizes, such as intraspecific variation in heat tolerance9. Also, practically speaking, a static assay requires less sophisticated equipment than a dynamic assay.

Objective
The objective of this paper is to formalize methods for CTmin and heat KD assays that can be used in future research to assess the thermal limits of motile insects. The protocols are adapted from previously established methodologies and are designed to be high-throughput, automated, and cost-effective. Both assays can be completed in a short amount of time (~2 h), which means that multiple experiments can be conducted in a single day, producing large amounts of data without sacrificing repeatability or accuracy. With this setup, the heat tolerance of 96 flies can be measured simultaneously, while the column for CTmin can hold more than 100 flies, provided there is adequate surface area for perching.

The high-throughput method for observing CTmin modifies the common jacketed column methodology with the addition of an infrared sensor to automatically count flies. The use of an infrared sensor for counting was first proposed by Shuman et al. in 199623 but has not been widely adopted. The addition of the infrared sensor allows for the generation of continuous data rather than collecting data at discrete intervals. This protocol also minimizes experimenter error by eliminating manual data entry and the need to manually switch collection tubes below the jacked column at discrete time points.

The high-throughput method for recording heat KDT is modified from two previous studies of heat tolerance in insects10,12. Individual flies are stored in a 96 well plate in a temperature-controlled incubator and video is recorded. This protocol minimizes experimenter bias in determining heat KDT because experiments can be reviewed and verified by playing back the recording. This protocol also provides a set of custom Python scripts that can be used to speed up video analysis. The use of individual wells eliminates interference that can occur when other individuals move around or fall over, which can be a problem when groups of individuals are observed in the same arena10,17. Furthermore, the temperature-controlled incubator provides a stable temperature across all 96 wells, unlike the temperature gradient sometimes observed across a temperature-controlled aluminum block10. Also note that the 96 well recording method can be adapted to measure dynamic CTmax and potentially CTmin (see Discussion).

To demonstrate each protocol, the thermal limits of adult Drosophila melanogaster females from select lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) were compared24. These lines were selected because preliminary experiments indicated significant differences in thermal tolerance. These assays proved to be robust methods for discriminating differences in thermal tolerance. The following two protocols, high-throughput CTmin assay (section 1) and high-throughput heat KD assay (section 2), describe the necessary actions to produce CTmin and heat KDT data for any motile insect life stage capable of fitting in the apparatuses, such as adult Drosophila. For CTmin it is also essential that the insect be able to perch. Here, each assay is demonstrated in adult Drosophila melanogaster. However, modifications may be required for other taxa or life stages6. Minor changes might include using perching material with larger openings to accommodate larger specimens in the CTmin assay or using a higher quality camera to discern the subtle KDT of a slow moving insect or life stage in the heat KD assay. This protocol does not describe methods for preparing flies, but it is important to standardize rearing protocols to ensure repeatability25 (see Garcia and Teets26 and Teets and Hahn27). The protocols provided include information on how to build and set up the apparatuses, how to record measurements, and a brief description of data analysis.

Protocol

1. High-throughput CTmin assay Assembling the jacketed column (Figure 1A, Figure 2) Cut the widest (7 cm x 6.35 cm x 0.3 cm) and narrowest (5.7 cm x 5.1 cm x 0.3 cm) acrylic tubes to equal lengths (31.5 cm) with a hacksaw (Figure 2A). These two tubes will be the outer and innermost walls of the jacketed column. Cut two rings (2 cm wide) from the midsized…

Representative Results

The thermal limits (i.e., CTmin and heat KDT) of females from the Drosophila melanogaster Genetic Reference Panel (DGRP) were measured to demonstrate the high-throughput data generated from the two described protocols. CTmin was assayed using the DGRP lines 714 (n = 37) and 913 (n = 45). Heat KDT was assayed and compared with the DGRP lines 189 (n = 42) and 461 (n = 42), and video files were manually analyzed. The total time of the experiments, including wat…

Discussion


The two methods detailed above generate high-throughput data of ecologically relevant metrics for upper and lower thermal limits. These protocols build upon previously established methodologies common to research on insect thermal limits (summarized in Sinclair et al.)6. Both protocols can be completed in a short amount of time (~2 h each), produce data sets with large sample sizes, do not sacrifice repeatability or accuracy, and minimize experimenter error by eliminating manual data record…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Ellie McCabe for assistance with fly rearing. This work is supported by United States Department of Agriculture National Institute of Food and Agriculture Hatch Project grant 1010996 and National Science Foundation grant OIA-1826689 to N.M.T.

Materials

ARCTIC A40 Refrigerated fluid circulator (Programable teperature ramps) Thermo Scientific; Waltham, MA 153-5401
C922 Pro Stream Webcam Logitech; Newark, CA 960-001087
Circular adjustable steel clamp – 5.08 cm to 7.62 cm Any Any
Clear acrylic tubing – 5.7 cm x 5.1 cm x 0.3 cm United States Plastic Corp., OH 44036
Clear acrylic tubing – 6.35 cm x 5.7 cm x 0.3 cm United States Plastic Corp., OH 440515
Clear acrylic tubing – 7 cm x 6.35 cm x 0.3 cm United States Plastic Corp., OH 44041
Clear silicone sealant Any Any
Collection tube (15 ml) Any Any
Cordless Drill Any Any
Drosophila Funnel Monitor (DFM) TriKinetics; Waltham, MA DFM Used to count the number of flies that fall through the funnel at a given time point
DAM data collection software TriKinetics; Waltham, MA Records data input from the DFM
Fly Storage Lid FlySorter; Seatle, WA FS-96LID-5PK Used to load flies into the storage plate for the sCTmax assay
Fly Storage Plate FlySorter; Seatle, WA FS-96PLATE-5PK Used to hold flies during in the sCTmax assay
Fly Food Tray FlySorter; Seatle, WA FS-TRAY-5PK Used to keep flies on food after loading into the 96-well plate until the sCTmax assay
Glass funnel Kimax 28950-75 75mm
Gutter guard Any Any ~0.5 cm diameter openings
Hacksaw Any Any
Heratherm Thermo Scientific incubator Thermo Scientific; Waltham, MA OMS100
Hose nylon adapters (2) – ¼ MNPT x 3/8 United States Plastic Corp., OH 61135
Hot glue gun and glue Any Any
Light Source Any Any
Magnets Any Any
OMEGA TC-08 Recorder and TC-08 Player Software OMEGA; Norwalk, CT
OMEGA thermocouple (Type T) OMEGA; Norwalk, CT 5LRTC-TT-K-20-36
Plastic funnel Any Any 2" diameter
Plastic tubing – 0.6 cm diameter United States Plastic Corp., OH 62852
Retort ring Any Any 2" diameter
Retort stand Any Any
Retort three-prong clamp Any Any
Rstudio
Serial port connector (PSIU9) TriKinetics; Waltham, MA PSIU9 Intermediate connection between the DFM and computer, allows for multiple DFM connections
Styrofoam (2" thick) Any Any
Tape Any Any
Uninterrupted Power Supply (PS9-1) TriKinetics; Waltham, MA PS9-1 Power supply for the DFM and PSIU9
Weld-on #4 Acrylic Cement United States Plastic Corp., OH 45737

References

  1. Dowd, W. W., King, F. A., Denny, M. W. Thermal variation, thermal extremes and the physiological performance of individuals. Journal of Experimental Biology. 218 (12), 1956-1967 (2015).
  2. Angilletta, M. J. . Thermal Adaptation: A Theoretical and Empirical Synthesis. , (2009).
  3. Coumou, D., Rahms Torf, S. A decade of weather extremes. Nature Climate Change. 2 (7), 491-496 (2012).
  4. Wang, G., Dillon, M. E. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nature Climate Change. 4 (11), 988-992 (2014).
  5. MacMillan, H. A. Dissecting cause from consequence: A systematic approach to thermal limits. Journal of Experimental Biology. 222 (4), 191593 (2019).
  6. Sinclair, B. J., Coello Alvarado, L. E., Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. Journal of Thermal Biology. 53, 180-197 (2015).
  7. Lutterschmidt, W. I., Hutchison, V. H. The critical thermal maximum: History and critique. Canadian Journal of Zoology. 75 (10), 1561-1574 (1997).
  8. Cooper, B. S., Williams, B. H., Angilletta, M. J. Unifying indices of heat tolerance in ectotherms. Journal of Thermal Biology. 33 (6), 320-323 (2008).
  9. Jørgensen, L. B., Malte, H., Overgaard, J. How to assess Drosophila heat tolerance: Unifying static and dynamic tolerance assays to predict heat distribution limits. Functional Ecology. 33 (4), 629-642 (2019).
  10. Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M., Bale, J. S. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiological Entomology. 33 (4), 389-394 (2008).
  11. Andersen, J. L., et al. How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology. 29 (1), 55-65 (2015).
  12. Hu, X. P., Appel, A. G. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology. 33 (2), 197-205 (2004).
  13. Rolandi, C., Lighton, J. R. B., de la Vega, G. J., Schilman, P. E., Mensch, J. Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster. Ecology and Evolution. 8 (21), 10374-10383 (2018).
  14. Overgaard, J., Kristensen, T. N., Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE. 7 (3), 1-7 (2012).
  15. Klok, C. J., Chown, S. L. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Lepidoptera: Tineidae). Journal of Insect Physiology. 43, 685-694 (1997).
  16. Salachan, P. V., Burgaud, H., Sørensen, J. G. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster. Journal of Insect Physiology. 118 (September), 103946 (2019).
  17. Everatt, M. J., Bale, J. S., Convey, P., Worland, M. R., Hayward, S. A. L. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. Journal of Insect Physiology. 59 (10), 1057-1064 (2013).
  18. MacMillan, H. A., Sinclair, B. J. The role of the gut in insect chilling injury: Cold-Induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. Journal of Experimental Biology. 214 (5), 726-734 (2011).
  19. Huey, R. B., Crill, W. D., Kingsolver, J. G., Weber, K. E. A method for rapid measurement of heat or cold resistance of small insects. British Ecological Society. 6 (4), 489-494 (1992).
  20. Jenkins, N. L., Hoffmann, A. A. Genetic and maternal variation for heat resistance in drosophila from the field. Genetics. 137 (3), 783-789 (1994).
  21. Ransberry, V. E., MacMillan, H. A., Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiological and Biochemical Zoology. 84 (6), 553-559 (2011).
  22. Sørensen, M. H., et al. Rapid induction of the heat hardening response in an Arctic insect. Biology Letters. 15 (10), (2019).
  23. Shuman, D., Coffelt, J. A., Weaver, D. K. A computer-based electronic fall-through probe insect counter for monitoring infestation in stored products. Transactions of the American Society of Agricultural Engineers. 39 (5), 1773-1780 (1996).
  24. MacKay, T. F. C., et al. The Drosophila melanogaster Genetic Reference Panel. Nature. 482 (7384), 173-178 (2012).
  25. Ashburner, M., Golic, K. G., Hawley, R. S. . Drosophila: A laboratory handbook. , (2005).
  26. Garcia, M. J., Teets, N. M. Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 331 (3), 192-200 (2019).
  27. Teets, N. M., Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. Journal of Evolutionary Biology. 31 (4), 543-555 (2018).
  28. Kelty, J. D., Lee, R. E. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. Journal of Insect Physiology. 45 (8), 719-726 (1999).
  29. MacMillan, H. A., Sinclair, B. J. Mechanisms underlying insect chill-coma. Journal of Insect Physiology. 57 (1), 12-20 (2011).
  30. Salachan, P. V., Sørensen, J. G. Critical thermal limits affected differently by developmental and adult thermal fluctuations. Journal of Experimental Biology. 220 (23), 4471-4478 (2017).
  31. Hoffmann, A. A., Hallas, R., Anderson, A. R., Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology. 18 (4), 804-810 (2005).
  32. Kelty, J. D., Lee, R. E. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology. 204 (9), 1659-1666 (2001).
  33. Sinclair, B. J., Vernon, P., Klok, C. J., Chown, S. L. Insects at low temperatures: An ecological perspective. Trends in Ecology and Evolution. 18 (5), 257-262 (2003).
check_url/61186?article_type=t

Play Video

Cite This Article
Awde, D. N., Fowler, T. E., Pérez-Gálvez, F., Garcia, M. J., Teets, N. M. High-Throughput Assays of Critical Thermal Limits in Insects. J. Vis. Exp. (160), e61186, doi:10.3791/61186 (2020).

View Video