Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

创建膝关节芯片,用于关节疾病建模和药物测试

Published: January 27, 2023 doi: 10.3791/64186

Summary

我们提供了从人间充质干细胞生成四种类型的组织的详细方法,这些组织用于概括人膝关节中的软骨、骨骼、脂肪垫和滑膜。这四个组织被集成到一个定制的生物反应器中,并通过微流体连接,从而产生一个膝关节芯片。

Abstract

骨关节炎(OA)等使人衰弱的关节疾病的高患病率构成了很高的社会经济负担。目前,针对关节疾病的可用药物大多是姑息性的。对有效的疾病修饰OA药物(DMOADs)的需求未得到满足,主要是由于缺乏适当的模型来研究疾病机制和测试潜在的DMOADs。在这里,我们描述了一个微型滑膜关节模拟微生理系统(miniJoint)的建立,该系统包括来自人间充质干细胞(MSCs)的脂肪,纤维和骨软骨组织成分。为了获得三维(3D)微组织,在分化之前或之后将MSCs包封在可光交联的甲基丙烯酸化明胶中。然后将充满细胞的组织结构整合到3D打印的生物反应器中,形成miniJoint。引入单独的成骨、纤维化和成脂培养基流以维持各自的组织表型。通过软骨、滑膜和脂肪组织灌注常见的共享流,以实现组织串扰。这种流动模式允许在一个或多个组织成分中诱导扰动以进行机理研究。此外,可以通过所有培养基流的“全身给药”或通过仅将药物添加到共享的“滑液”模拟流中的“关节内给药” 测试潜在的DMOAD。因此,miniJoint可以作为一个多功能 的体外 平台,用于有效研究疾病机制和测试个性化医疗中的药物。

Introduction

骨关节炎 (OA) 等关节疾病非常普遍且使人衰弱,是全球残疾的主要原因1。据估计,仅在美国,OA就影响了2700万患者,12.1%的60岁及以上成年人2。不幸的是,目前用于治疗关节疾病的大多数药物都是姑息性的,并且没有有效的疾病改善OA药物(DMOADs)可用3。这种未满足的医疗需求主要源于缺乏研究疾病机制和开发潜在DMOAD的有效模型。传统的二维(2D)细胞培养不能反映关节组织的3D性质,并且组织外植体的培养经常受到显着细胞死亡的阻碍,并且通常无法复制动态组织互连4。此外,遗传和解剖学差异显着降低了动物模型的生理相关性4

器官芯片(OoCs)或微生理系统是工程,生物学和医学界面的一个有前途的研究领域。这些 体外 平台是最小的功能单位,可复制其 体内 对应物的定义健康或病理特征5。此外,这些小型化系统可以容纳不同的细胞和基质,并模拟不同组织之间的生物物理和生化相互作用。因此,能够忠实地概括天然滑膜关节的微生理系统有望为关节疾病建模和开发潜在的DMOAD提供有效的平台。

人间充质干细胞(MSCs)可以从全身的许多组织中分离出来,并分化为成骨、软骨和成脂谱系6。间充质干细胞已成功用于设计各种组织,包括骨骼,软骨和脂肪组织6,这意味着它们代表了设计膝关节组织成分的有前途的细胞来源。我们最近开发了一种微型关节模拟微生理系统,名为miniJoint,包括MSC衍生的骨骼,软骨,纤维和脂肪组织7。特别是,新颖的设计可以通过微流体流动或渗透实现组织串扰(图1)。在这里,我们提出了芯片组件的制造,组织组件的工程,芯片中工程组织的培养以及用于下游分析的组织收集的协议。

Figure 1
图 1:miniJoint 芯片示意图,显示了不同组织组件和介质流的排列。 OC = 骨软骨组织。 请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

以下协议遵循匹兹堡大学和匹兹堡大学人类研究伦理委员会的伦理准则。有关本研究所用材料的信息列在 材料表中

1. 制造3D打印生物反应器

  1. 使用计算机软件设计骨软骨(图2A)和微型关节生物反应器(图2B),包括腔室,插入物和盖子。每个零件的尺寸信息如图 S1所示。
  2. 将设计转移到3D打印机,并使用光敏聚合物墨水打印。
  3. 用 15 mL 的 95% 乙醇冲洗 3D 打印部件(图 2C-F)。然后,在手电筒聚合装置中将打印件完全交联200秒。
  4. 将O形圈添加到插件和盖子上(图2C,D),并测试零件是否合适(图2G,H)。

Figure 2
图2:制造miniJoint生物反应器的不同组件的制造。 (A,B),用于创建(A)骨软骨和(B)微型关节芯片的生物反应器的3D模型。(C,D)安装了O形圈的3D打印(C)盖子和(D)插件。E,F)用于(E)骨软骨和(F)微型关节组织培养的3D打印室。GH)组装(G)骨软骨和(H)微型关节芯片。请点击此处查看此图的大图。

2. 组织成分工程

注意:苯基-2,4,6-三甲基苯甲酰次膦酸锂(LAP)和甲基丙烯酸化明胶(GelMA)的制造工艺在以前的研究89中有所描述。

  1. 要创建GelMA,请按照以下步骤操作。
    1. 将17gB型明胶加入500mL蒸馏水中,然后在37°C下在摇床上混合30分钟。
    2. 然后,加入13mL甲基丙烯酸酐,放回37°C摇床上,摇匀过夜。
    3. 第二天,将GelMA等分到单独的透析袋中,每个袋中~60毫升。
    4. 将所有透析袋放入带搅拌棒的蒸馏水中,并允许透析7天。每天多次换水,并将袋子在4°C下过夜。
    5. 在第7天,将GelMA冷冻在-80°C。 完全冷冻后,进行冻干。
    6. 将GelMA放入冻干机真空室的培养皿中,并冷冻干燥。确保在从冻干机中取出之前,GelMA已完全干燥。
  2. 将GelMA溶解在Hank的平衡盐溶液(含Ca 2+和Mg2+的HBSS)中,浓度为15%(w / v)。为确保pH值为7.4,请少量添加NaOH,直到pH值达到7.4。根据获得的体积,用1x抗生素 - 抗真菌剂和0.15%(w / v)LAP补充溶液。将15%GelMA溶液储存在-20°C直至使用,并避光。
  3. 将3D打印的双流生物反应器室,盖子和插入物放入高压灭菌器袋中,并在121°C下用蒸汽高压灭菌20分钟,然后用干热高压灭菌20分钟。
  4. 在生物安全柜内,将生物反应器室、盖子和插入物浸泡在 15 mL 无菌磷酸盐缓冲盐水中过夜,然后让它们干燥。
  5. 经IRB批准(匹兹堡大学和华盛顿大学),从全关节置换手术废物中分离出人骨髓来源的MSC。
    1. 具体来说,从股骨颈和头部的小梁骨中冲洗出骨髓,并将其重新悬浮在Dulbecco的改良鹰培养基(DMEM)中。
    2. 通过40μm过滤器过滤悬浮液,并以300× g 离心流出物5分钟。
    3. 除去上清液,使用生长培养基[DMEM,10%胎牛血清(FBS)和1x抗生素 - 抗真菌剂]重悬沉淀,然后放入组织培养瓶中。
    4. 每3天至4天更换培养基。在继续操作之前,请确保达到 70% 到 80% 的汇合率。
    5. 通过与胰蛋白酶-EDTA孵育2-3分钟来分离细胞,并以每个T150烧瓶100万个细胞的比例传代。
    6. 将单元格展开到 P5。胰蛋白酶消化后,悬浮细胞,计数,然后以300×g 离心5分钟沉淀。
  6. 用 1,000 μL 移液器将细胞以 20 x 106 个细胞/mL 重悬于 15% GelMA 溶液中。
    注意:关闭生物安全柜的灯。
  7. 使用无菌手套,将无菌干燥的硅胶模具压在培养皿上。然后,用镊子将一个插入物放入硅胶模具的每个孔中,插件的孔侧朝下。
  8. 使用 200 μL 移液器,加入细胞悬液以填充插入物(每个插入物 ~50 μL)。
  9. 使用紫外手电筒(波长为395nm的LED灯)交联凝胶/插入物的顶部1.5分钟。然后,照亮另一侧30秒。当 LAP 光引发剂暴露在紫外线下时,会发生交联。
    注意:在此期间,细胞悬液可以保存在培养箱中或避光。
  10. 使用无菌镊子,立即将插入物转移到非组织培养 6 孔板(DMEM 补充有 10% [v/v] FBS 和 1x 抗生素-抗真菌剂)中的 8 mL 生长培养基中,以使细胞在夜间恢复。
  11. 将细胞分化为四个谱系。
    1. 要设计脂肪组织 (AT),请将插入物转移到 8 mL 的成脂培养基 (AM;α-MEM、10% FBS、0.2 mM 吲哚美辛、1x 胰岛素-转铁蛋白-硒 (ITS)、0.45 mM 3-异丁基-1-甲基黄嘌呤、0.1 μM 地塞米松和 1x 抗生素-抗真菌药)以启动分化。理想情况下,将四个插入物放置在具有8 mL脂肪培养基的非组织培养孔板的单个孔中。将细胞在孔板中培养28天,每隔一天更换培养基。
    2. 为了设计骨软骨单元 (OC),将插入物放入双流生物反应器室中,盖上孔,并以 5 μL/min 的流速分别注入 35 mL 成骨培养基 (OM;DMEM、10% FBS、1x 抗生素-抗真菌药、0.1 μM 地塞米松、0.01 M β-甘油磷酸盐、100 ng/mL 骨形态发生蛋白 7 (BMP7)、50 μg/mL 抗坏血酸和 10 nM 维生素 D3)和 35 mL 成软骨培养基 (CM;DMEM、1x 抗生素-抗真菌药、1x ITS、0.1 μM 地塞米松、40 μg/mL 脯氨酸、50 μg/mL 抗坏血酸和 10 ng/mL 转化生长因子 β3)10。通过每两周更换一次培养基来维持细胞分化 28 天。
    3. 为了获得成纤维细胞,在 T150 cm2 组织培养瓶中使用 20 mL 纤维化培养基(FM;高级 DMEM、5% FBS、1x GlutaMAX、1x 抗生素-抗真菌剂和 50 μg/mL 抗坏血酸)在 21 天内分化 MSC。每周更换培养基。按照上述方案,使用4 mL胰蛋白酶分离细胞,并将3D凝胶封装在插入物中,以获得滑膜样纤维组织(SFT)。
      注意:所有分化培养基的组成可在 表1中找到。

3. 建立微型关节芯片

  1. 高压灭菌3D miniJoint生物反应器室,内径为0.062英寸和外径为0.125英寸的硅胶管,以及F 1/16鲁尔锁连接器。将硅胶管一端连接到微型关节生物反应器倒钩,另一端连接鲁尔锁。
  2. 准备步骤 2.11 中提到的 AM、OM(删除 BMP7)和 FMCM。此外,准备用于miniJoint培养的常用共享培养基(SM;无酚红DMEM,1x抗生素 - 抗真菌剂,1x丙酮酸钠,1x ITS,40μg/ mL脯氨酸,50μg/ mL抗坏血酸和0.5ng / mL转化生长因子β3)。将每种培养基的 35 mL 加载到培养基储液槽中。
  3. 使用直镊子将骨软骨单元从双流生物反应器转移到miniJoint生物反应器的右孔中。将脂肪组织插入物和纤维组织插入物分别转移到左孔和中间孔中。用无菌盖盖住所有孔。
  4. 将miniJoint芯片的入口连接到介质储液罐,将出口连接到注射器(图3A-C)。
  5. 将注射器安装到注射泵上(图3C),并将泵和芯片转移到培养箱中。培养基储液槽保存在培养箱外的冰上。
  6. 在抽出模式下操作泵,将介质从介质储液器吸入微型生物反应器室。这种微型关节培养过程持续28天。
  7. 为了模拟关节炎症和软骨变性,将白介素 1β (IL-1β) 以 10 ng/mL 的浓度添加到纤维化培养基流中。在IL-1β治疗的第三天更换注射器,并向纤维化培养基提供新鲜的IL-1β。治疗持续7天。
  8. 在药物测试步骤中,在IL-1β治疗3天后,在共享培养基中施用药物,模拟“关节内给药”(图3D)当药物局部用于膝关节时,或在所有培养基类型中,模拟“全身给药”(图3E)当药物通过循环作用于膝关节时。
  9. 收集单个组织在IL-1β治疗7天后进行分析,无论样品是否在过去4天内接受了药物治疗。

Figure 3
图 3:迷你接头的组装。 (AB)组织特异性培养基从入口1-3(I1-3)引入并从出口1-3(O1-3)移出。共享培养基从 I4 灌注到 O4。()小联合文化的完整设置。药物(绿太阳状形状)可以仅引入(D)共享培养基或(E)所有培养基中,以分别模拟“关节内给药”或“全身给药”。请点击此处查看此图的大图。

4. 个人组织采集

  1. 使用无菌弯曲镊子取出插入物。
  2. 将活检冲头推入插入物的中心以取出凝胶,然后将凝胶放入PBS中。
  3. 在评估基因表达时将骨软骨凝胶切成两半。
    注意:由于骨软骨凝胶由两种组织类型组成,因此分离成骨细胞和成软骨细胞很重要。
  4. 收集条件培养基和组织进行各种实验。
    1. 从每个培养基源收集约 1.5 mL。
    2. 以14,000× g 离心10分钟后,在液氮中快速冷冻条件培养基并丢弃沉淀物。
    3. 对于组织学染色和免疫染色,首先将OC和SFT样品固定在10%缓冲福尔马林中,在升序浓度的乙醇中脱水,在二甲苯中清除它们,将它们包埋在石蜡中,最后以6μm的厚度切片。
    4. 对于AT微组织,将样品固定在10%缓冲的福尔马林中,并直接用油红O溶液或BODIPY染色。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

收集mini关节的所有组织以分析其在mini关节中培养28天后的表型(图4A)。这在我们之前的出版物7中已经详细介绍了。

通过使用RT-qPCR、免疫染色和组织学染色,证实单个微组织的组织特异性表型得到了很好的维持(图4)。例如,OC微组织的骨成分(OC-O)而不是其他组织成分表达高水平的骨钙素(OCN)。相比之下,在骨软骨组织(OC-C)的软骨部分,II型胶原(COL2)和聚集胶(ACAN)的表达水平明显高于其他组织(图4B)。脂联素(ADIPOQ)和瘦素(LEP)这两个代表性的成脂基因在AT中的表达水平远高于其他组织。钙矿物质(图4F,G)以及碱性磷酸酶(ALP)和OCN蛋白(图4D)的沉积主要见于OC-O,OC-C显示出保留良好的糖胺聚糖(GAG)(图4C)和COL2(图4D)。此外,在第28天的OC-C中检测到的两种软骨细胞肥大相关标志物X型胶原(COL10)和印度刺猬(IHH)的表达在miniJoint中培养28天后发现显着下调(图4E)。

RT-qPCR、免疫染色和组织学结果证实,在微型关节培养4周后,AT和SFT的表型得以成功维持(图4BHI)。使用BODIPY染色和油红O染色,我们在AT中观察到丰富的脂滴沉积(图4H)。 图4I 中的免疫荧光染色图像显示,在小型关节培养4周后,SFT对润滑素和钙粘蛋白11(CDH11)的表达非常稳定。

综合起来,这些结果表明在miniJoint系统中创建了一个功能性的多组织滑膜关节模型。

Figure 4
4:在 miniJoint 芯片中共培养 4 周后维持微组织的单个组织表型。 (A)生成保持组织特异性表型的正常微型关节芯片的时间表。(B)RT-qPCR结果显示所有组织成分中的关键标记基因。OCN数据归一化为OC-O中的值,COL2和ACAN数据归一化为OC-C中的值,ADIPOQLEP数据归一化为AT中的值,TNCCOL1数据归一化为SFT中的值。通过单因素方差分析(N = 3个生物学重复)分析数据。* p < 0.05;** p < 0.01;< 0.001;p < 0.0001。(C)双相OC单元的Safranin O染色。比例尺 = 1 mm。 (D)组织学染色和免疫染色图像证实OC单元的相应成分中存在骨特异性和软骨特异性标志物。比例尺 = 50 μm。 (E) 免疫染色显示,OC-C 第 56 天两种肥大标志物 COLX 和 IHH 的表达远低于第 28 天。比例尺 = 50 μm。 (F) 茜素 OC单位的红色染色显示主要存在于OC-O中钙沉积物。比例尺 = 500 μm。 (G) (F) 中茜素红染色图像的放大视图。比例尺= 200μm。 (H)油红O和BODIPY染色图像显示AT中脂滴的保留。比例尺 = 50 μm。 (I)免疫染色图像显示滑膜样纤维组织(SFT)表达润滑素和CDH11。比例尺 = 50 μm。经李等人许可转载7.请点击此处查看此图的大图。

为了创建疾病模型,在共培养28天后将白细胞介素1β(IL-1β)引入FM流(图5AB)。IL-1β处理导致SFT中的细胞凋亡和MMP-13水平升高(图5C)。有趣的是,我们观察到由IL-1β处理的微型关节中的软骨降解(图5D),表明OC-C和SFT之间存在串扰。

Figure 5
图 5:模拟迷你关节中的关节炎症和变性。 (A)通过用IL-1β挑战SFT来诱导“滑膜炎”的示意图。(B)建立和分析疾病模型的时间表。(C)TUNEL测定和MMP-13免疫染色显示SFT的病理变化。DNA片段由红色箭头表示。比例尺= 50μm。 (D)赛峰苷O染色和MMP-13免疫染色图像显示OC-C的变性。比例尺 = 50 μm。经李等人许可转载7.请点击此处查看此图的大图。

最后,我们通过“全身给药”测试了萘普生(NPX)的治疗效果(图6A),这被证明可以减少IL-1β处理的微型关节中的软骨降解(图6B)。我们还通过“关节内给药”检查了其他四种潜在的DMOAD(图6A)。实时荧光定量PCR的结果表明,这四种化合物能够部分逆转软骨损失(图6C)。

Figure 6
图6:在已建立的疾病模型中通过“全身”和“关节内”途径测试药物。A)显示两种不同给药途径的示意图,包括萘普生(NPX)的“全身给药”和成纤维细胞生长因子18(FGF18),SM04690,硬化素(SOST)和IL-1受体拮抗剂(IL-1RN)的“关节内给药”。(B)Safranin O和MMP-13染色图像显示NPX处理后OC-C变性减轻。比例尺 = 50 μm。 (C)四种不同药物“关节内给药”后OC-C中的基因表达。各药物治疗组与对照组的统计学差异用*p表示<0.05;** p < 0.01;< 0.001;和 **** p < 0.0001。通过学生t检验(N = 4个生物学重复)分析数据。经李等人许可转载7.请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

在本文中,我们提出了一种用于创建膝关节芯片系统的协议,其中骨骼,软骨,脂肪组织和滑膜样组织由MSC形成并在定制的生物反应器中共同培养。这种具有即插即用功能的多组分人类细胞衍生系统是研究关节疾病发病机制和开发药物的新工具。

鉴于不同的组织有利于特定的培养基,因此为每个组织提供相应的培养基并防止流动之间的自由培养基交换至关重要。特别是,在双相骨软骨组织的产生过程中,幼稚MSC的命运由它们所接触的培养基决定。在当前的设计中,我们使用基于明胶的水凝胶作为支架,它为细胞生长提供了模板,并密封了组织与插入物壁之间的潜在间隙。因此,在插入片段内原 光交联凝胶至关重要。此外,BMP7和TGFβ3等生长因子分别在成骨培养基和成软骨培养基中补充。为了保持其生物活性数天,新鲜培养基在引入芯片培养物之前必须保存在培养箱外。因此,我们需要使用注射器从储液器中取出培养基,而不是在培养箱中注入培养基。

处理生物反应器时的另一个关键点是避免不必要的压力。组织依靠与插入壁的物理结合来保持原位。由于它们暴露在顶部和底部介质流中,如果流动的某一相具有较高的压力,则可能会将组织推出插入物,从而导致泄漏。因此,在处理过程中,例如在去除气泡时,轻轻推动注射器至关重要。如果水凝胶支架被推出,可以将其放回原处,可以应用额外的未固化水凝胶来填充间隙,并且可以固化,从而使支架牢固地安装在插入物中。

鉴于其经过验证的生物相容性,基于明胶的支架用于创建当前系统中的所有四种组织。应该注意的是,明胶可能不是支持组织形成的最佳材料。因此,如有必要,可以调整其他类型的脚手架以供使用。例如,可以使用多孔和坚硬的支架并将其与明胶结合以进一步增强MSC成骨11。在这种情况下,需要确保顶部和底部流之间没有自由介质变化。如上所述,可以使用生物相容性水凝胶来密封潜在的泄漏点。此外,MSCs用于当前的组织芯片。鉴于诱导多能干细胞(iPSCs)已证明具有肌肉骨骼组织的分化潜力,未来也可用于替代MSC。作为这项研究的第一步,我们最近使用iPSCs来创建骨软骨组织12

滑膜炎症或滑膜炎是OA和许多其他关节疾病的关键特征。此外,Atukorala等人发现滑膜炎是随后放射学OA13的强预测因子。因此,我们通过IL-1β处理诱导SFT炎症,在迷你关节中产生OA样特征。然而,我们知道这种疾病诱导方法无法捕获OA的所有方面。因此,在我们未来的研究中,我们将探索在微型关节中模拟OA的替代方法,例如,使用超生理负荷来诱导软骨组件的机械损伤14。为了施加机械载荷,需要调整微型接头设计。例如,可以潜在地修改miniJoint芯片的底部,以使软骨组织能够接触到我们实验室15开发的定制弹簧加载冲击装置的冲击器尖端。

据我们所知,这里描述的膝关节芯片是第一个体 模型,在一个系统中包括多个组织来模拟滑膜关节。新颖的即插即用功能允许研究单个组织在疾病进展中的作用及其对各种治疗的反应。该系统还可用于模拟OA以外的关节疾病。例如,可以将细菌和其他病原体引入SM以模拟化脓性关节炎16。此外,该设计可实现组织之间的实时串扰,从而克服了使用条件介质的限制。具体来说,脂肪、滑膜和软骨组织可以通过共享介质进行交流,骨骼和软骨可以通过直接的物理结合相互作用。但是,当前的miniJoint存在一些限制。首先,使用干细胞衍生的组织,它们的表型和功能是否与天然膝关节中的对应物相似需要进一步研究。其次,不包括在OA发病机制中起关键作用的免疫细胞,如巨噬细胞。我们之前的研究已经证明了在明胶支架中加入巨噬细胞的可行性17。最后,不包括物理应力启用机制来模拟自体膝关节组织中组织的机械负荷。最近,Occhetta等人开发了一种芯片软骨模型,其中应用应变控制压缩以刺激工程软骨组织14。可以采用类似的方法来启用微型接头中的机械加载。

综上所述,miniJoint可以作为一个独特的平台,在 体外研究 OA和相关病症的发病机制,并为探索潜在的DMOADs和个性化医疗干预措施提供机制。miniJoint系统还可以与模拟其他器官的OoC集成,以建立可用于研究各种器官模拟物之间相互作用的芯片系统。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者声明没有竞争利益。

Acknowledgments

这项研究主要由美国国立卫生研究院(UG3 / UH3TR002136,UG3 / UH3TR003090)资助。此外,我们感谢Paul Manner博士(华盛顿大学)提供人体组织样本,感谢Jian Tan博士帮助分离MSCs和创建细胞池。

Materials

Name Company Catalog Number Comments
3-isobutyl-1-methylxanthine Sigma -Aldrich I17018-1G
6 well non-tissue culture plate Corning Falcon® Plates 351146
24 well non-tissue culture plate Corning Falcon® Plates 351147
30 mL syringes BD Syringe Luer Lock Cascade Health 302832
Alcian blue stain EK Industries 1198 1% w/v, pH 1.0
Advanced DMEM Gibco 12491-015
αMEM Gibco 12571-063
Antibiotic-antimycotic Gibco 15240-062
Biopsy punch Integra Miltex 12-460-407
BODIPY® fluorophore Molecular Probes
Bone morphogenic protein 7 (BMP7) Peprotech
Curved forceps Fisher Brand 16100110
DMEM Gibco 11995-065 Dulbecco’s Modified Eagle Medium
Dexmethasome Sigma -Aldrich 02-05-2002
E-Shell 450 photopolymer in EnvisionTec RES-01-4022
Fetal Bovine Serum Gemini-Bio Products 900-208
GlutaMAX Gibco 3505-061
gelatin from bovine skin Hyclone 1003372809
Hank’s Balanced Salt Solution Sigma -Aldrich SH30588.02
indomethacin Sigma -Aldrich I7378-56
Insulin-Transferrin-Selenium-Ethanolamine (ITS) Gibco 51500-056
interleukin 1β Peprotech 200-01B
Leur-loc connectors Cole-Parmer Instruments 45508-50
L-proline Sigma -Aldrich 115388-93-7
β-glycerophosphate Sigma -Aldrich 1003129352
Medium bags KiYATEC FC045
Methacrylic Anhydride Sigma -Aldrich 102378580
Phosphate buffered Saline Corning 21-040-CM
Pointed forceps Fisher Brand 12000122
Silicon mold McMaster-Carr RC00114P
Silicon o-rings McMaster-Carr ZMCCs1X5 1mm x 5mm
SolidWorks Dassault Systèmes SE, Vélizy-Villacoublay, France
Surgical Blades Integra Miltex 4-122
Syringe pump Lagato210P, KD Scientific Z569631 10 syringe racks
T-182 tissue culture flasks Fisher Brand FB012939
Tissue Culture Dish 150 mm Fisher Brand FB012925
Transforming Growth Factor Beta (TGF-β3) Peprotech 100-36E
Trypsin Gibco 25200-056
UV Flashlight KBS KB70109 395 nm
Vida Desktop 3D Printer EnvisionTec
Vitamin D3 Sigma -Aldrich 32222-06-3 1,25-dihydroxyvitamin D3

DOWNLOAD MATERIALS LIST

References

  1. Safiri, S., et al. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017. Annals of the Rheumatic Diseases. 79 (6), 819-828 (2020).
  2. Lawrence, R. C., et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis and Rheumatism. 58 (1), 26-35 (2008).
  3. Makarczyk, M. J., et al. Current models for development of disease-modifying osteoarthritis drugs. Tissue Engineering. Part C, Methods. 27 (2), 124-138 (2021).
  4. He, Y., et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology. 9 (8), 194 (2020).
  5. Ronaldson-Bouchard, K., Vunjak-Novakovic, G. Organs-on-a-chip: A fast track for engineered human tissues in drug development. Cell Stem Cell. 22 (3), 310-324 (2018).
  6. Lin, H., Sohn, J., Shen, H., Langhans, M. T., Tuan, R. S. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials. 203, 96-110 (2019).
  7. Li, Z., et al. Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing. Advanced Science. 9 (21), 2105909 (2022).
  8. Lin, H., Cheng, A. W., Alexander, P. G., Beck, A. M., Tuan, R. S. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Engineering. Part A. 20 (17-18), 2402-2411 (2014).
  9. Fairbanks, B. D., Schwartz, M. P., Bowman, C. N., Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 30 (35), 6702-6707 (2009).
  10. Lin, H., Lozito, T. P., Alexander, P. G., Gottardi, R., Tuan, R. S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Molecular Pharmaceutics. 11 (7), 2203-2212 (2014).
  11. Yin, B., et al. Hybrid macro-porous titanium ornamented by degradable 3D gel/nHA micro-scaffolds for bone tissue regeneration. International Journal of Molecular Sciences. 17 (4), 575 (2016).
  12. Lin, Z., et al. Osteochondral tissue chip derived from iPSCs: Modeling OA pathologies and testing drugs. Frontiers in Bioengineering and Biotechnology. 7, 411 (2019).
  13. Atukorala, I., et al. Synovitis in knee osteoarthritis: A precursor of disease. Annals of the Rheumatic Diseases. 75 (2), 390-395 (2016).
  14. Occhetta, P., et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nature Biomedical Engineering. 3 (7), 545-557 (2019).
  15. He, C., et al. Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models. Stem Cell Research and Therapy. 13 (1), 400 (2022).
  16. Elsissy, J. G., et al. Bacterial septic arthritis of the adult native knee joint: A review. JBJS Reviews. 8 (1), 0059 (2020).
  17. Romero-Lopez, M., et al. Macrophage effects on mesenchymal stem cell osteogenesis in a three-dimensional in vitro bone model. Tissue Engineering. Part A. 26 (19-20), 1099-1111 (2020).

Tags

生物工程,第191期,骨关节炎,组织芯片,疾病修饰性骨关节炎药物,微生理系统
创建膝关节芯片,用于关节疾病建模和药物测试
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Makarcyzk, M. J., Li, Z. A., Yu, I., More

Makarcyzk, M. J., Li, Z. A., Yu, I., Yagi, H., Zhang, X., Yocum, L., Li, E., Fritch, M. R., Gao, Q., Bunnell, B. A., Goodman, S. B., Tuan, R. S., Alexander, P. G., Lin, H. Creation of a Knee Joint-on-a-Chip for Modeling Joint Diseases and Testing Drugs. J. Vis. Exp. (191), e64186, doi:10.3791/64186 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter